Resonance Methods

  • D. Haneman

Abstract

In this article we will discuss the application to surfaces of two powerful techniques used widely for bulk studies: electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). EPR detects the presence of unpaired electrons through their magnetic moments; NMR detects nuclei with net (spin) magnetic moments. the detection sensitivity of EPR, however, is about 106 times that of NMR. This tends to make it a more useful tool in surface studies, where the number of entities is so limited by the available surface area that NMR is often insufficiently sensitive. Hence the major portion of this article will be devoted to EPR studies. There is also a technique known as cyclotron resonance which picks up effects due to surfaces, but it has not been exploited much for surfaces to date since these effects are due to relatively thick layers (50 Å and more) through which an electron describes substantial parts of orbits. There are few detailed specific surface results, and we shall not go into this technique here.

Keywords

Zinc Cellulose Quartz Anisotropy Graphite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Pake, Paramagnetic Resonance, W. A. Benjamin, New York, (1962).Google Scholar
  2. 2.
    D. J. E. Ingram, Free Radicals as Studied by E.S.R., Butterworths, London (1958).Google Scholar
  3. 3.
    C P. Slichter, Principles of Magnetic Resonance, Harper and Row, New York (1963).Google Scholar
  4. 4.
    B. Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16, 108–180 (1953).CrossRefGoogle Scholar
  5. 5.
    A. Abragam and M. H. L. Pryce, Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals, Proc. Rov. Soc. (London) A205, 135–153 (1951).CrossRefGoogle Scholar
  6. 6.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).Google Scholar
  7. 7.
    C. P. Poole, Jr. and H. A. Farach, Relaxation in Magnetic Resonance, Academic Press, New York (1971); The Theory of Magnetic Resonance, Interscience, New York (1972).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, London (1965).Google Scholar
  9. 9.
    P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford (1958).Google Scholar
  10. 10.
    R. M. Golding, Applied Wave Mechanics, Van Nostrand, New York (1969).Google Scholar
  11. 11.
    F. J. Adrian, Guidelines for interpreting electron spin resonance spectra of paramagnetic species adsorbed on surfaces, J. Colloid Interface Sci. 26, 317–360 (1968).CrossRefGoogle Scholar
  12. 12.
    S. M. Blinder, J. Chem. Phys. 33, 748 (1969).CrossRefGoogle Scholar
  13. 13.
    F. J. Adrian, E. L. Cochran, and V. A. Bowers, J. Chem. Phys. 36, 1661 (1962).CrossRefGoogle Scholar
  14. 14.
    R. Lefebre and J. Maruani, J. Chem. Phys. 42, 1480 (1965).CrossRefGoogle Scholar
  15. 15.
    D. L. Griscom, P. C. Taylor, D. A. Ware, and P. J. Bray, J. Chem. Phys. 48, 5158 (1968).CrossRefGoogle Scholar
  16. 16.
    G. Feher and A. F. Kin, Phys. Rev. 98, 337 (1955).CrossRefGoogle Scholar
  17. 17.
    M. F. Chung and D. Haneman, Properties of clean Si surfaces by paramagnetic resonance, J. Appl. Phys. 37, 1879–1889 (1966).CrossRefGoogle Scholar
  18. 18.
    D. J. Miller and D. Haneman, EPR investigation of the surfaces of Si-Ge alloys, Surface Sci. 33, 477–492 (1972).CrossRefGoogle Scholar
  19. 19.
    D. J. Miller, Ph.D. Thesis, Univ. of New South Wales (1972).Google Scholar
  20. 20.
    D. J. Miller, D. L. Heron, and D. Haneman, Semiconductor surface states considered on the Hubbard model; correlation with EPR data, J. Vac. Sci. Techn. 9, 906–914 (1972).CrossRefGoogle Scholar
  21. 21.
    J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. (London) 276, 238–257 (1963).CrossRefGoogle Scholar
  22. 22.
    J. Hubbard, Electron correlations in narrow energy bands. III. An improved solution, Proc. Roy. Soc. (London) A281, 401–418 (1964).Google Scholar
  23. 23.
    D. J. E. Ingram, Electron Spin Resonance, in Handbuch der Physik, Vol. 18/1, pp. 94–144, Springer-Verlag, New York (1968).Google Scholar
  24. 24.
    J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Vol. 1, Pergamon Press, London (1965).Google Scholar
  25. 25.
    G. Feher, Bell System Tech. J. 36, 449 (1957).CrossRefGoogle Scholar
  26. 26.
    J. S. Hyde, Principles of EPR instrumentation, in Seventh Annual NMR-EPR Workshop, Varian Associates, pp. 1–15 (1963).Google Scholar
  27. 27.
    Varian Associates, Large Sample Access Cavity, Data Sheet 18-A-017-17 (1967).Google Scholar
  28. 28.
    D. M. Young and A. D. Crowell, Physical Adsorption of Gases, Butterworths, London (1962).Google Scholar
  29. 29.
    D. E. O’Reilly, Adv. Catalysis 12, 311 (1960).Google Scholar
  30. 30.
    J. H. Lunsford, Electron spin resonance in catalysis, in Advances in Catalysis 22, 265 (1972).CrossRefGoogle Scholar
  31. 31.
    P. E. Pickert, J. A. Rabo, E. Dempsey, and V. Schomaker, Zeolite cations with strong electrostatic fields as carboniogenic catalytic centers, in Proceedings of the Third International Congress on Catalysis, Amsterdam, pp. 714–726, North-Holland, Amsterdam (1965).Google Scholar
  32. 32.
    K. M. Wang and J. H. Lunsford, Electron paramagnetic resonance evidence for the presence of aluminum at adsorption sites on decationated zeolites, J. Phys. Chem. 73, 2069–2071 (1969).CrossRefGoogle Scholar
  33. 33.
    J. H. Lunsford, An electron paramagnetic resonance study of y-type zeolites. II. Nitric oxide on alkaline earth zeolites, J. Phys. Chem. 74, 1518–1522 (1970).CrossRefGoogle Scholar
  34. 34.
    C. B. Colburn, R. Ettinger, and F. A. Johnson, Inorg. Chem. 2, 1305 (1963).CrossRefGoogle Scholar
  35. 35.
    J. Turkevich, F. Nozaki, and D. Stamires, Studies on nature of active centers and mechanism of heterogeneous catalysis, in Proceedings of the Third International Congress on Catalysis, Amsterdam, pp. 586–595, North-Holland, Amsterdam (1965).Google Scholar
  36. 36.
    J. A. Rabo, C. L. Angell, P. H. Kasai, and V. Schomaker, Discussions Faraday Soc. 41,328 (1966).CrossRefGoogle Scholar
  37. 37.
    J. A. R. Cope, C. L. Gardner, C. A. McDowell, and A. J. Pelman, An ESR study of CIO and CI adsorbed on zeolites, Mol. Phys. 21, 1043 (1971).CrossRefGoogle Scholar
  38. 38.
    D. E. O’Reilly and D. S. McIver, J. Phys Chem. 66, 276 (1962).CrossRefGoogle Scholar
  39. 39.
    C. P. Poole, W. L. Kehl, and D. S. McIver, J. Catalysis 1, 407 (1962).CrossRefGoogle Scholar
  40. 40.
    A. Clark, J. P. Hogan, R. L. Banks, and W. C. Lanning, Ind. Eng. Chem. 48, 1152 (1956).CrossRefGoogle Scholar
  41. 41.
    J. H. Lunsford, A study of irradiation induced active sites on magnesium oxide using electron paramagnetic resonance, J. Phys. Chem. 68, 2312–2316 (1964).CrossRefGoogle Scholar
  42. 42.
    J. H. Lunsford and J. P. Jayne, Electron paramagnetic resonance of oxygen on ZnO and ultraviolet-irradiated MgO, J. Chem. Phys. 44, 1487–1492 (1966).CrossRefGoogle Scholar
  43. 43.
    J. H. Lunsford, EPR spectra of radicals formed when NO2 is adsorbed on magnesium oxide, J. Colloid Interface Sci. 26, 355–360 (1968).CrossRefGoogle Scholar
  44. 44.
    W. B. Williamson, J. H. Lunsford, and C. Naccache, The EPR spectrum of O on magnesium oxide, Chem. Phys. Letters 9, 33–34 (1971).CrossRefGoogle Scholar
  45. 45.
    H. B. Charman and R. M. Dell, Trans. Faraday Soc. 59, 470 (1963).Google Scholar
  46. 46.
    R. L. Nelson, A. J. Tench, and B. J. Harmsworth, Chemisorption on some alkaline earth oxides, Trans. Faraday Soc. 63, 1427–1446 (1967).CrossRefGoogle Scholar
  47. 47.
    A. J. Tench and R. L. Nelson, Paramagnetic defects associated with hydrogen adsorbed on the surface of magnesium and calcium oxides, J. Colloid Interface Sci. 26, 364–373 (1960).CrossRefGoogle Scholar
  48. 48.
    A. J. Tench and T. Lawson, The formation of O and O3 adsorbed on an oxide surface, Chem. Phys. Letters 7, 459–460 (1970).CrossRefGoogle Scholar
  49. 49.
    A. J. Tench and J. Kibblewhite, ESR study of chlorine radicals stabilized on an oxide surface, J. Chem. Soc. A14, 2282–2284 (1971).Google Scholar
  50. 50.
    D. Cordischi, R. L. Nelson, and A. J. Tench, Surface reactivity of magnesium oxide doped with manganese: An E.S.R. and chemisorption study, Trans. Faraday Soc. 65, 2740–2757 (1969).CrossRefGoogle Scholar
  51. 51.
    P. J. Kasai, Phys. Rev. 130, 989 (1963).CrossRefGoogle Scholar
  52. 52.
    R. J. Kokes, J. Phys. Chem. 66, 99 (1962).CrossRefGoogle Scholar
  53. 53.
    E. V. Baranov, V. E. Kholmogorov, and A. N. Terenin, Dokl. Phys. Chem. 146, 125 (1962).Google Scholar
  54. 54.
    J. H. Lunsford, Surface interactions of zinc oxide and zinc sulphide with nitric oxide, J. Phys. Chem. 72, 2141–2144 (1968).CrossRefGoogle Scholar
  55. 55.
    R. D. Iyengar and V. V. Subba Rao, ESR studies on zinc and on zinc oxide obtained from a decomposition of zinc peroxide, J. Phys. Chem. 75, 3089–3092 (1971).CrossRefGoogle Scholar
  56. 56.
    T. Kwan, Photoadsorption and photodesorption of oxygen on inorganic semiconductors and related photocatalysis, in Symposium on Electronic Phenomena in Chemisorption and Catalysis on Semiconductors, pp. 184–195, Walter de Gruyter and Co., Berlin (1969).Google Scholar
  57. 57.
    R. D. Iyengar, M. Codell, J. S. Karra, and J. Turkevich, Electron spin resonance studies of the surface chemistry of rutile, J. Am. Chem. Soc. 88, 5055 (1966).CrossRefGoogle Scholar
  58. 58.
    V. B. Kasansky and G. B. Pariisky, in Proceedings of the Third International Congress on Catalysis, Amsterdam, p. 367, North-Holland, Amsterdam (1965).Google Scholar
  59. 59.
    J. J. Rooney and R. C. Pink, Trans. Faraday Soc. 58, 1632 (1962).CrossRefGoogle Scholar
  60. 60.
    H. P. Leftin, M. C. Hobson, and J. S. Leigh, J. Phys. Chem. 66, 1214 (1962).CrossRefGoogle Scholar
  61. 61.
    V. V. Voevodski, in Proceedings of the Third International Congress on Catalysis, Amsterdam, p. 88, North-Holland, Amsterdam (1965).Google Scholar
  62. 62.
    C. L. Gardner, Electron-spin-resonance study of chlorine atoms adsorbed on a silica-gel surface, J. Chem. Phys. 46, 2991–2994 (1967).CrossRefGoogle Scholar
  63. 63.
    C. L. Gardner and E. J. Casey, Tumbling of methyl radicals adsorbed on a silica gel surface studied by electron spin resonance, Can. J. Chem. 46, 207–210 (1968).CrossRefGoogle Scholar
  64. 64.
    A. J. Tench, Temperature effects on the hyperfine coupling of a surface center, Surface Sci. 25, 625–632 (1971).CrossRefGoogle Scholar
  65. 65.
    G. K. Walters and T. L. Estle, Paramagnetic resonance of defects introduced near the surface of solids by mechanical damage, J. Appl. Phy. 32, 1854–1859 (1961).CrossRefGoogle Scholar
  66. 66.
    D. J. Miller and D. Haneman, Electron-paramagnetic-resonance study of clean and oxygen exposed surfaces of GaAs, AlSb, and other III-V compounds, Phy. Rev. B3, 2918–2938 (1971).Google Scholar
  67. 67.
    S. Mrozowski and J. F. Andrew, in Proceedings of the Fourth Conference on Carbon, p. 207, Pergamon Press, New York (1960).Google Scholar
  68. 68.
    G. B. Demidovitch, V. F. Kiselev, N. N. Lejnev, and O. V. Nikitina, Nature of freshly crushed surfaces of graphite and mechanism of their interaction with oxygen and hydrogen, J. Chim. Phys. 65, 1072–1078 (1968).Google Scholar
  69. 69.
    H. P. Boehm, Angew. Chem. 18, 617 (1966).CrossRefGoogle Scholar
  70. 70.
    L. S. Singer, A review of electron spin resonance in carbonaceous materials, in Proceedings of the Fifth Conference on Carbon, pp. 37–64, Pergamon Press, New York (1963).Google Scholar
  71. 71.
    D. J. Miller and D. Haneman, Carbon EPR signal from vacuum heated surfaces, Surface Sci. 24, 639–642 (1971).CrossRefGoogle Scholar
  72. 72.
    D. J. Miller and D. Haneman, Evidence for carbon contamination on vacuum heated surfaces by EPR, Surface Sci. 19, 45–52 (1970).CrossRefGoogle Scholar
  73. 73.
    G. Feher, Phys. Rev. 114, 1219 (1959).CrossRefGoogle Scholar
  74. 74.
    D. Haneman, M. F. Chung, and A. Taloni, Comparison of thermal behavior of vacuum crushed, air crushed and mechanically polished Si surfaces by EPR, Phys. Rev. 170,719–723 (1968).CrossRefGoogle Scholar
  75. 75.
    P. Chan and A. Steinemann, EPR study on Si, Ge, and GaAs surfaces interacting with adsorbed oxygen, Surface Sci. 5, 267–282 (1966).CrossRefGoogle Scholar
  76. 76.
    T. Wada, T. Mizutani, M. Hirose, and T. Arizumi, Annealing effects of paramagnetic defects introduced near silicon surfaces, J. Phys. Soc. Japan 22, 1060–1065 (1967).CrossRefGoogle Scholar
  77. 77.
    M. F. Chung, The effects of bulk doping on the ESR signal of clean Si surfaces, J. Phys. Chem. Solids 32, 475–485 (1961).CrossRefGoogle Scholar
  78. 78.
    D. Haneman, EPR from clean single-crystal cleavage surfaces of silicon, Phys. Rev. 170, 705–718 (1968).CrossRefGoogle Scholar
  79. 79.
    R. S. Title, M. H. Brodsky, and B. L. Crowder, EPR studies in amorphous Si, in Proceedings of the Tenth International Conference on the Physics of Semiconductors, United States Atomic Energy Commission, Cambridge, Massachusetts (1971 United States Atomic Energy Commission, Cambridge, Massachusetts).Google Scholar
  80. 80.
    G. B. Demidovich and V. F. Kiselev, EPR from clean Ge and Si surfaces, Phy. Stat. Sol. (b) 50,K33–K35 (1972).CrossRefGoogle Scholar
  81. 81.
    J. Higinbotham and D. Haneman, Paramagnetic surface states of Ge, Surface Sci. 34, 450–456 (1973).CrossRefGoogle Scholar
  82. 82.
    M. H. Brodsky, R. S. Title, K. Weiser, and G. D. Pettit, Phys. Rev. B1, 2632 (1970).Google Scholar
  83. 83.
    G. Hochstrasser, J. F. Antonini, and I. Peyches, MS and ESR studies of dangling bonds and adsorbed ions on the pristine surface of silica, in The Structure and Chemistry of Solid Surfaces (G. Somorjai, ed.) pp. 36–1–36–11, Wiley, New York (1969).Google Scholar
  84. 84.
    R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).CrossRefGoogle Scholar
  85. 85.
    J. W. Searl, R. C. Smith, and S. J. Wyard, Proc. Phys. Soc. (London) A78, 1174 (1961).CrossRefGoogle Scholar
  86. 86.
    W. Kanzig and M. H. Cohen, Phys. Rev. Letters 3, 509 (1959).CrossRefGoogle Scholar
  87. 87.
    R. J. Kokes, Proceedings of the Third International Congress on Catalysis, Amsterdam, p. 484, North-Holland, Amsterdam (1964).Google Scholar
  88. 88.
    Z. Z. Ditina and L. P. Strakhov, Investigation of the surface of CdSe by the EPR method, Sov. Phys.—Solid State 9, 2000–2003 (1968).Google Scholar
  89. 89.
    Z. Z. Ditina, B. A. Kazennov, and L. P. Strakhov, Paramagnetic centers on CdS surface, Sov. Phys.—Semicond. 1, 1434 (1968).Google Scholar
  90. 90.
    T. Arizumi, T. Mizutani, and K. Shimakawa, EPR study on surface properties of ZnS and CdS, Japan. J. Appl. Phys. 8, 1411–1416 (1969).CrossRefGoogle Scholar
  91. 91.
    J. Higinbotham and D. Haneman, EPR from II-VI and IV-VI semiconductor surfaces, Surface Sci. 32, 466 (1972).CrossRefGoogle Scholar
  92. 92.
    D. J. Lepine, Spin-dependent recombination on silicon surface, Phys. Rev. B6, 436 (1972).Google Scholar
  93. 93.
    H. Winkler, Math.-Naturwiss. 4, 913 (1965).Google Scholar
  94. 94.
    K. J. Packer, Nuclear spin relaxation studies of molecules adsorbed on surfaces, in Progress in NMR Spectroscopy, Vol. 3, pp. 87–128, Pergamon Press, London (1967).Google Scholar
  95. 95.
    H. A. Resing, NMR relaxation of molecules adsorbed on surfaces, Advan. Mol. Relax. Proc. 1, 109–154 (1967-1968).CrossRefGoogle Scholar
  96. 96.
    V. I. Kvlividze, Dokl. Adad. Nauk SSSR 157, 673 (1964).Google Scholar
  97. 97.
    D. E. Woessner, J. Chem. Phys. 39, 2783 (1963).CrossRefGoogle Scholar
  98. 98.
    J. K. Thompson, J. J. Krebs, and H. A. Resing, J. Chem. Phys. 43, 3853 (1965).CrossRefGoogle Scholar
  99. 99.
    D. E. Woessner, J. Phys. Chem. 70, 1217 (1966).CrossRefGoogle Scholar
  100. 100.
    R. K. Webster, T. L. Jones, and P. J. Anderson, Proc. Brit. Ceram. Soc. 5, 153 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • D. Haneman
    • 1
  1. 1.School of PhysicsUniversity of New South WalesSydneyAustralia

Personalised recommendations