The Platyfish, Xiphophorus maculatus

  • Klaus D. Kallman


Fishes of the genus Xiphophorus (Poeciliidae, Atheriniformes) are found on the Atlantic slope of Mexico and adjacent parts of Central America.


Domesticate Stock Pigment Pattern Pigment Gene Poeciliid Fish Histocompatibility Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anders, A. and F. Anders, 1963 Genetisch bedingte XX-und XY-♀♀ und YY-♂♂ beim wilden Platypoecilus maculatus aus Mexiko. Z. Vererbungsl. 94:1–18.CrossRefGoogle Scholar
  2. Anders, A., F. Anders and D. L. Purseglove, 1971 X-ray-induced mutations of the genetically-determined melanoma system of xiphophorin fish. Experientia (Basel) 27:931–932.CrossRefGoogle Scholar
  3. Anders, A., F. Anders and K. Klinke, 1973 Regulation of gene expression in the Gordon-Kosswig melanoma system. 1. The distribution of the controlling genes in the genome of the xiphophorin fish, Platypoecilus maculatus and Platypoecilus variatus. 2. The arrangement of chromatophore determining loci and regulating elements in the sex chromosomes of xiphophorin fish, Platypoecilus maculatus and Platypoecilus variatus. In Genetics and Mutagenesis of Fish, edited by J. H. Schröder, pp. 33–52 and 53–63, Springer-Verlag, New York.Google Scholar
  4. Anders, F., 1967 Über genetische Mechanismen der Regulation niederer und höherer Systeme. Zool. Anz. 179:1–79.Google Scholar
  5. Anders, F. and K. Klinke, 1965 Untersuchungen über die erbbedingte Aminosäurenkonzentration, Farbgenmanifestation und Tumorbildung bei lebendgebärenden Zahnkarpfen (Poeciliidae). Z. Vererbungsl. 96:49–65.PubMedGoogle Scholar
  6. Atz, J. W., 1962 Effects of hybridization on pigmentation in fishes of the genus Xiphophorus. Zoologica (N.Y.) 47:153–181.Google Scholar
  7. Becker, C., 1965 Untersuchungen zur Phänogenese von Melanophorenmustern bei Zahnkarpfen. Z. Wiss. Zool. 172:37–103.Google Scholar
  8. Bellamy, A. W., 1924 Bionomic studies on certain teleosts (Poeciliinae). 1. Statement of problems, description of material, and general notes on life histories and breeding behavior under laboratory conditions. Genetics 9:513–529.PubMedGoogle Scholar
  9. Borowsky, R., 1973 Relative size and development of fin coloration in Xiphophorus variatus. Physiol. Zool. 46:22–28.Google Scholar
  10. Braddock, J. C., 1949 The effect of prior residence upon dominance in the fish Platypoecilus maculatus. Physiol. Zool. 22:161–169.PubMedGoogle Scholar
  11. Breider, H., 1942 ZW-Männchen und WW-Weibchen bei Platypoecilus maculatus. Biol. Zentr. 62:187–195.Google Scholar
  12. Clark, E., L. R. Aronson and M. Gordon, 1954 Mating behavior patterns in two sympatric species of xiphophorin fishes: Their inheritance and significance in sexual isolation. Bull. Am. Mus. Nat. Hist. 103:135–226.Google Scholar
  13. Dzwillo, M. and C. D. Zander, 1967 Geschlechtsbestimmung und Geschlechtsumstimmung bei Zahnkarpfen (Pisces). Mitt. Hamb. Zool. Mus. Inst. 64:147–162.Google Scholar
  14. Flerkó, B., 1970 Control of follicle-stimulating hormone and luteinizing hormone secretion. In The Hypothalamus, edited by L. Martini, M. Metta, and F. Fraschini, pp. 351–363, Academic Press, New York.Google Scholar
  15. Franck, D., 1964 Vergleichende Verhaltensstudien an lebendgebärenden Zahnkarpfen der Gattung Xiphophorus. Zool. Jahrb. Abt. Allg. Zool. Physiol Tiere 71:117–170.Google Scholar
  16. Franck, D., 1970 Verhaltensgenetische Untersuchungen an Artbastarden der Gattung Xiphophorus (Pisces). Z. Tierpsychol. 27:1–34.PubMedCrossRefGoogle Scholar
  17. Friedman, B. and M. Gordon, 1934 Chromosome numbers in xiphophorin fishes. Am. Nat. 58:446–455.CrossRefGoogle Scholar
  18. Gordon, H. and M. Gordon, 1954 Biometry of seven natural populations of the platyfish Xiphophorus maculatus from Central America. Zoologica (N.Y.) 39:37–59.Google Scholar
  19. Gordon, H. and M. Gordon, 1957 Maintenance of polymorphism by potentially injurious genes in eight natural populations of the platyfish Xiphophorus maculatus. J. Genet. 55:1–44.CrossRefGoogle Scholar
  20. Gordon, M., 1927 The genetics of a viviparous top-minnow Platypoecilus; The inheritance of two kinds of melanophores. Genetics 12:253–283. ai]Gordon, M., 1928 Pigment inheritance in the Mexican killifish. J. Hered. 19:551–556.PubMedGoogle Scholar
  21. Gordon, M., 1931a Hereditary basis of melanosis in hybrid fishes. Am. J. Cancer 15:1495–1519.Google Scholar
  22. Gordon, M., 1931b Morphology of heritable color patterns in the Mexican killifish Platypoecilus. Am. J. Cancer 15:732–787.Google Scholar
  23. Gordon, M., 1937 Genetics of Platypoecilus. 3. Inheritance of sex and crossing over of the sex chromosomes in the platyfish. Genetics 22:376–392.PubMedGoogle Scholar
  24. Gordon, M., 1946a Interchanging genetic mechanism for sex determination in fishes under domestication. J. Hered. 37:307–320.PubMedGoogle Scholar
  25. Gordon, M., 1946b Introgressive hybridization in domesticated fishes. 1. The behavior of comet, a Platypoecilus maculatus gene in Xiphophorus helleri. Zoologica (N.Y.) 31:77–88.Google Scholar
  26. Gordon, M., 1947a Speciation in fishes. Adv. Genet. 1:95–132.PubMedCrossRefGoogle Scholar
  27. Gordon, M., 1947b Genetics of Platypoecilus maculatus. 4. The sex-determining mechanism in two wild populations of the Mexican platyfish. Genetics 32:8–17.Google Scholar
  28. Gordon, M., 1948 Effects of five primary genes on the site of melanomas in fishes and the influence of two color genes on their pigmentation.. In The Biology of Melanomas, Vol. 4, pp. 216–268, New York Academy of Science, New York.Google Scholar
  29. Gordon, M., 1950a Heredity of pigmented tumors in fish. Endeavour 9:26–34.Google Scholar
  30. Gordon, M., 1950b Fishes as laboratory animals. In The Care and Breeding of Laboratory Animals, edited by E. Farris, pp. 345–349, John Wiley & Sons, New York.Google Scholar
  31. Gordon, M., 1951a The variable expressivity of a pigment cell gene from zero effect to melanotic tumor induction. Cancer Res. 11:676–686.PubMedGoogle Scholar
  32. Gordon, M., 1951b Genetics of Platypoecilus maculatus 5. Heretogametic sex-determining mechanism in females of a domesticated stock originally from British Honduras. Zoologica (N. Y.) 36:127–134.Google Scholar
  33. Gordon, M., 1951c How the bleeding-heart platy was “invented.” Animal Kingdom 54:43–46.Google Scholar
  34. Gordon, M., 1952 Sex determination in Xiphophorus (Platypoecilus) maculatus. 3. Differentiation of gonads in platyfish from broods having a sex ratio of three females to one male. Zoologica (N.Y.) 37:91–100.Google Scholar
  35. Gordon, M., 1956 An intricate genetic system that controls nine pigment cell patterns in the platyfish. Zoologica (N Y.) 41:153–162.Google Scholar
  36. Gordon, M., 1958 A genetic concept for the origin of melanomas. Ann. N.Y. Acad. Sci. 71:1213–1222.PubMedCrossRefGoogle Scholar
  37. Gordon, M., 1959 The melanoma cell as an incompletely differentiated pigment cell. In Pigment Cell Biology, edited by M. Gordon, pp. 215–236, Academic Press, New York.Google Scholar
  38. Gordon, M. and D. E. Rosen, 1951 Genetics of species differences in the morphology of the male genitalia of xiphophorin fishes. Bull. Am. Mus. Nat. Hist. 95:409–464.Google Scholar
  39. Grobstein, D., 1940 Endocrine and developmental studies of the gonopod differentiation in certain poeciliid fishes. I. The structure and development of the gonopod in Platypoecilus maculatus. Univ. Calif. Publ. Zool. 47:1–22.Google Scholar
  40. Häussler, G., 1928 Über Melanombildungen bei Bastarden von Xiphophorus maculatus var. rubra. Klin. Wochenschr. 7:1561–1562.CrossRefGoogle Scholar
  41. Hildemann, W. H. and E. D. Wagner, 1954 Intraspecific sperm competition in Lebistes reticulatus. Am. Nat. 88:87–91.CrossRefGoogle Scholar
  42. Hinegardner, R., 1968 Evolution of cellular DNA content in teleost fishes. Am. Nat. 102:517–523.CrossRefGoogle Scholar
  43. Kallman, K. D., 1960 Dosage and additive effects of histocompatibility genes in the teleost Xiphophorus maculatus. Ann. N.Y. Acad. Sci. 73:599–610.CrossRefGoogle Scholar
  44. Kallman, K. D., 1964 An estimate of the number of histocompatibility loci in the teleost Xiphophorus maculatus. Genetics 50:583–595.PubMedGoogle Scholar
  45. Kallman, K. D., 1965 Genetics and geography of sex determination in the poeciliid fish Xiphophorus maculatus. Zoologica (N.Y.) 50:151–190.Google Scholar
  46. Kallman, K. D., 1968 Evidence for the existence of transformer genes for sex in the teleost Xiphophorus maculatus. Genetics 60:811–828.PubMedGoogle Scholar
  47. Kallman, K. D., 1970a Different genetic basis of identical pigment patterns in two populations of platyfish, Xiphophorus maculatus. Copeia 1970 3:472–487.CrossRefGoogle Scholar
  48. Kallman, K. D., 1970b Sex determination and the restriction of sex-linked pigment patterns to the X and Y chromosomes in populations of a poeciliid fish, Xiphophorus maculatus, from the Belize and Sibun rivers of British Honduras. Zoologica (N.Y.) 55:1–16.Google Scholar
  49. Kallman, K. D., 1970c Genetics of tissue transplantation in Teleostei. Transplant. Proc. 2:263–271.PubMedGoogle Scholar
  50. Kallman, K. D., 1971 Inheritance of melanophore patterns and sex determination in the Montezuma swordtail, Xiphophorus montezumae cortezi Rosen. Zoologica (N.Y.) 56:77–94.Google Scholar
  51. Kallman, K. D., 1973 The sex-determining mechanism of the platyfish, Xiphophorus maculatus. In Genetics and Mutagenesis of Fish, edited by J. H. Schröder, pp. 19–28, Springer-Verlag, New York.Google Scholar
  52. Kallman, K. D. and J. W. Atz, 1966 Gene and chromosome homology in fishes of the genus Xiphophorus. Zoologica (N.Y.) 55:1–16.Google Scholar
  53. Kallman, K. D. and M. P. Schreibman, 1971 The origin and possible genetic control of new, stable pigment patterns in the poeciliid fish Xiphophorus maculatus. J. Exp. Zool. 176:147–168.PubMedCrossRefGoogle Scholar
  54. Kallman, K. D. and M. P. Schreibman, 1973a A sex-linked gene controlling gonadotrop differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus. Gen. Comp. Endocrinol. 21:287–304.PubMedCrossRefGoogle Scholar
  55. Kallman, K. D. and M. P. Schreibman, 1973b A gene controlling age of gonadotrop differentiation in the platyfish, Xiphophorus maculatus. Genetics 74(2) Suppl.:s 131.Google Scholar
  56. Kallman, K. D., M. P. Schreibman and V. Borkoski, 1973 Genetic control of gonadotrop differentiation in the platyfish, Xiphophorus maculatus (Poeciliidae). Science (Wash., D.C.) 181:678–680.CrossRefGoogle Scholar
  57. Kosswig, C., 1928 Über Kreuzungen zwischen den Teleostiern Xiphophorus helleri und Platypoecilus maculatus. Z. Indukt. Abstammungs.-Vererbungsl. 47:150–158.CrossRefGoogle Scholar
  58. Kosswig, C., 1929 Das Gen in fremder Erbmasse. Züchter 1:152–157.Google Scholar
  59. Kosswig, C., 1937 Über die veranderte Wirkung von Farbgenen in fremden Genotypen. Biol. Gen. 13:276–293.Google Scholar
  60. Kosswig, C., 1964 Polygenic sex determination. Experientia (Basel) 20:1–10.CrossRefGoogle Scholar
  61. Maclntyre, P. A., 1961 Crossing over within the macromelanophore gene in the platyfish (Xiphophorus maculatus). Am. Nat. 95:323–324.CrossRefGoogle Scholar
  62. Ohno, S., 1967 Sex Chromosomes and Sex-Linked Genes, Springer-Verlag, Heidelberg.Google Scholar
  63. Öktay, M., 1959 Weitere Untersuchungen über eine Ausnahme XX-Sippe des Platypoecilus maculatus mit polygener Geschlechtsbestimmung. Rev. Fac. Sci. Univ. Istanbul 24:224–233.Google Scholar
  64. Öktay, M., 1964 Über genbedingte rote Farbmuster bei Xiphophorus maculatus. Mitt. Hamb. Zool. Mus. Inst. (Kosswig-Festschrift):133–157.Google Scholar
  65. Peters, G., 1964 Vergleichende Untersuchungen an drei Subspecies von Xiphophorus helleri Heckel (Pisces). Z. Zool. Syst. Evolutionsforsch. 2:185–271.CrossRefGoogle Scholar
  66. Purseglove, D. L., A. Anders, G. Doll and F. Anders, 1971 Effects of X-irradiation on the genetically-determined melanoma system of xiphophorin fish. Experientia (Basel) 27:695–697.CrossRefGoogle Scholar
  67. Rasch, E. M., L. M. Prehn and R. W. Rasch, 1970 Cytogenetic studies of Poecilia (Pisces) II. Triploidy and DNA levels in naturally occurring populations associated with the gynogenetic teleost, Poecilia formosa (Girard). Chromosoma (Berl.) 31:18–40.CrossRefGoogle Scholar
  68. Rosen, D. E., 1960 Middle American poeciliid fishes of the genus Xiphophorus. Bull. Fla. State Mus. Biol. Ser. 5:57–242.Google Scholar
  69. Rosen, D. E. and R. M. Bailey, 1963 The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics. Bull. Am. Mus. Nat. Hist. 126:1–176.Google Scholar
  70. Rosen, D. E. and M. Gordon, 1953 Functional anatomy and evolution of male genitalia in poeciliid fishes. Zoologica (N.Y.) 38:1–47.Google Scholar
  71. Rosen, D. E. and K. D. Kallman, 1969 A new fish of the genus Xiphophorus from Guatemala, with remarks on the taxonomy of endemic forms. Am. Mus. Novit. 2379, 1–29.Google Scholar
  72. Scholl, A. and F. Anders, 1973 Tissue-specific preferential expression of the Xiphophorus xiphidium allele for 6-phosphogluconate dehydrogenase in interspecific hybrids of platyfish (Poeciliidae, Teleostei). In Genetics and Mutagenesis of Fish, edited by J. H. Schröder, pp. 301–313, Springer-Verlag, New York.Google Scholar
  73. Schreibman, M. P., 1964 Studies on the pituitary gland of Xiphophorus maculatus. Zoologica (N. Y.) 49:217–243.Google Scholar
  74. Sengün, A., 1950 Beiträge zur Kenntnis der erblichen Bedingtheit von Formunterschieden der Gonopddien lebendgebärender Zahnkarpfen. Istanbul Univ. FenFak. Mecm. Ser. B 15:110–133.Google Scholar
  75. Siciliano, M. J., 1972 Evidence for a spontaneous ovarian cycle in fish of the genus Xiphophorus. Biol. Bull. 142:480–488.CrossRefGoogle Scholar
  76. Siciliano, M. J., and D. A. Wright, 1973 Evidence for multiple unlinked genetic loci for isocitrate dehydrogenase in fish of the genus Xiphophorus. Copeia 1973 1:158–161.CrossRefGoogle Scholar
  77. Siciliano, M. J., D. A. Wright, S. L. George and C. R. Shaw, 1973 Inter-and intraspecific genetic distances among teleosts. 17th Congr. Interntl. Zool. Theme No. 5.Google Scholar
  78. Tavolga, W. N., 1949 Embryonic development of the platyfish (Platypoecilus), the swordtail (Xiphophorus) and their hybrids. Bull. Am. Mus. Nat. Hist. 94:167–229.Google Scholar
  79. Vallowe, H. H., 1953 Some physiological aspects of reproduction in Xiphophorus maculatus. Biol. Bull. 104:240–249.CrossRefGoogle Scholar
  80. Valenti, R. J., 1972 A qualitative and quantitative study of red and yellow pigmentary polymorphism in Xiphophorus. Ph.D. Thesis, New York University, New York.Google Scholar
  81. Valenti, R. J. and K. D. Kallman, 1973 Effects of gene dosage and hormones on the expression of Dr in the platyfish, Xiphophorus maculatus (Poeciliidae). Genet. Res. 22:79–89.PubMedCrossRefGoogle Scholar
  82. Wright, D. A., M. J. Siciliano, and J. N. Baptist, 1972 Genetic evidence for the tetramer structure of glyceraldehyde-3-phosphate dehydrogenase. Experientia (Basel) 28:888–889.CrossRefGoogle Scholar
  83. Zander, C. D., 1962 Untersuchungen über einen arttrennenden Mechanismus bei lebendgebärenden Zahnkarpfen aus der Tribus Xiphophorini. Mitt. Hamb. Zool. Mus. Inst. 60:205–264.Google Scholar
  84. Zander, C. D., 1965 Die Geschlechtsbestimmung bei Xiphophorus montezumae cortezi Rosen (Pisces). Z. Vererbungsl. 96:128–141.CrossRefGoogle Scholar
  85. Zander, C. D., 1968 Über die Vererbung von Y-gebundenen Farbgenen des Xiphophorus pygmaeus nigrensis Rosen (Pisces). Mol. Gen. Genet. 101:29–42.PubMedCrossRefGoogle Scholar
  86. Zander, C. D., 1969 Über die Entstehung und Veranderung von Farbmustern in der Gattung Xiphophorus (Pisces). I. Qualitative Veränderungen nach Artkreuzung. Mitt. Hamb. Zool. Mus. Inst. 66:241–271.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Klaus D. Kallman
    • 1
  1. 1.New York Aquarium and Osborn Laboratories of Marine SciencesBrooklynUSA

Personalised recommendations