Methods for Studying Protein Phosphorylation in Cerebral Tissues

  • Richard Rodnight
  • Martin Reddington
  • Maria Gordon


Until the discovery of cyclic AMP and its action in stimulating protein kinase activity (see Kuo and Greengard, 1969, for review), the tissue phosphoproteins and their associated enzymes had been relatively little studied. This applied particularly to cerebral tissues: for many years there were only a few laboratories in the world interested in the subject (for a review of early studies see Rodnight, 1971). The tremendous increase in research into the subject began in the late 1960s with the discovery of the role of cyclic AMP-mediated protein phosphorylation in the control of glycogen metabolism in liver and skeletal muscle (Holzer, 1969). Since then the nervous system has shared with other organs a remarkable extension of the subject to many other areas of cellular function. Thus there is now suggestive evidence for the involvement of protein phosphorylation in the modulation of synaptic action in the cerebral cortex (Williams and Rodnight, 1974), possibly in sympathetic ganglia (Greengard and Kebabian, 1974), in neurotubular function (Eipper, 1974; Lagnado et al., 1975), in enzyme induction in the pineal gland (Fontana and Lovenberg, 1973) and adrenal (Costa et al., 1974), in sensory transduction in the retina (Frank et al., 1973; Kuehn et al., 1973), in secretory processes in the anterior pituitary (Lemay et al., 1974), and in protein synthesis in the brain (Schmidt and Sokoloff, 1973) and adrenal (Walton and Gill, 1973).


Protein Phosphorylation Electrical Pulse Specific Radioactivity Phosphoamino Acid Intrinsic Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D. R., and Rodnight, R. (1974) Biochem. J. 137, 253.PubMedGoogle Scholar
  2. Carnegie, P., Dunkley, P. R., Kemp, B. E., and Murrary, A. W. (1974) Nature (London) 249, 147.CrossRefGoogle Scholar
  3. Costa, E., Guidotti, A., and Hanbauer, I. (1974) Life Sci. 14, 1169.PubMedCrossRefGoogle Scholar
  4. Decsi, L., and Rodnight, R. (1965) J. Neurochem. 12, 791.PubMedCrossRefGoogle Scholar
  5. Ehrlich, Y. H., and Routtenberg, A. (1974) FEBS Lett. 45, 237.PubMedCrossRefGoogle Scholar
  6. Eipper, B. A. (1974) J. Biol. Chem. 249, 1398.PubMedGoogle Scholar
  7. Folbergrova, J. (1969) J. Neurochem. 16, 191.PubMedCrossRefGoogle Scholar
  8. Fontana, J. A., and Lovenberg, W. (1973) Proc. Natl. Acad. Sci. (U.S.) 70, 755.CrossRefGoogle Scholar
  9. Forsberg, H., Zetterqvist, O., and Engstrom, L. (1969) Biochim. Biophys. Acta, 181, 171.PubMedGoogle Scholar
  10. Frank, R. N., Cavanagh, H. D., and Kenyon, K. R. (1973) J. Biol. Chem. 248, 596.PubMedGoogle Scholar
  11. Glynn, I. M., and Chappel, J. B. (1964) Biochem. J. 90, 147.PubMedGoogle Scholar
  12. Greengard, P., and Kebabian, J. W. (1974) Fed. Proc. Am. Soc. Exp. Biol. 33, 1059.Google Scholar
  13. Heald, P. J. (1954) Biochem. J. 57, 673.PubMedGoogle Scholar
  14. Heald, P. J. (1956) Biochem. J. 63, 242.PubMedGoogle Scholar
  15. Heald, P. J. (1957) Biochem. J. 66, 659.PubMedGoogle Scholar
  16. Heald, P. J. (1958) Biochem. J. 68, 580.PubMedGoogle Scholar
  17. Hems, D. A., and Rodnight, R. (1966) Biochem. J. 101, 516.PubMedGoogle Scholar
  18. Holzer, H. (1969) Adv. Enzymol. 32, 297.PubMedGoogle Scholar
  19. Johnson, E. M., Maeno, H., and Greengard, P. (1971) J. Biol. Chem. 246, 7731.PubMedGoogle Scholar
  20. Jones, D. A. (1971) Ph.D. Thesis, London University.Google Scholar
  21. Jones, D. A., and Rodnight, R. (1971) Biochem. J. 121, 597.PubMedGoogle Scholar
  22. Kanazawa, T., Saito, M., and Tonomura, Y. (1970) J. Biochem. (Tokyo) 67, 693.Google Scholar
  23. Katsuki, S., Saito, K., and Yoshida, H. (1973) J. Biochem. (Tokyo) 73, 1303.Google Scholar
  24. Kothary, K. (1963) Ph.D. Thesis, London University.Google Scholar
  25. Krebs, E. G. (1972) Curr. Top. Cell. Regul. 5, 94.Google Scholar
  26. Kuehn, H., Cook, J. H., and Dreyer, W. J. (1973) Biochemistry 12, 2495.CrossRefGoogle Scholar
  27. Kumar, R., Tao, M., Protrowski, R., and Solomon, L. (1973) Biochim. Biophys. Acta 315, 66.PubMedGoogle Scholar
  28. Kumon, A., Nishiyama, K., Yamamura, H., and Nishizuka, Y. (1972) J. Biol. Chem. 247, 3726.PubMedGoogle Scholar
  29. Kuo, J-F. (1972) Methods Mol. Biol. 3, 199.Google Scholar
  30. Kuo, J-F., and Greengard, P. (1969) Proc. Natl. Acad. Sci. (U.S.) 64, 1349.CrossRefGoogle Scholar
  31. Lagnado, J. R., Tau, L. P., and Reddington, M. (1975) Ann. N.Y. Acad. Sci. 253, in press.Google Scholar
  32. Langan, T. A. (1969) J. Biol. Chem. 244, 5763.PubMedGoogle Scholar
  33. Langan, T. A. (1973) Adv. Cyclic Nucleotide Res. 3, 99.PubMedGoogle Scholar
  34. Ledig, M., Feigenbaum, H., and Mandel, P. (1963) Biochim. Biophys. Acta 72, 332.PubMedCrossRefGoogle Scholar
  35. Lemay, A., Deschenes, M., Lemaire, S., Poirer, G., Poulin, L., and Labrie, F. (1974) J. Biol. Chem. 249, 323.PubMedGoogle Scholar
  36. Logan, M., Mannell, W. A., and Rossiter, R. J. (1952) Biochem. J. 51, 470, 480.PubMedGoogle Scholar
  37. Lowry, O. H., Passoneau, J. V., Hasselberger, F. X., and Schultz, D. W. (1964) J. Biol. Chem. 239, 18.PubMedGoogle Scholar
  38. McIlwain, H., and Rodnight, R. (1962) Practical Neurochemistry, 1st ed., J. & A. Churchill, London, p. 54.Google Scholar
  39. Maeno, H., and Greengard, P. (1972) J. Biol. Chem. 247, 3269.PubMedGoogle Scholar
  40. Maeno, H., Johnson, E. M., and Greengard, P. (1971) J. Biol. Chem. 246, 134.PubMedGoogle Scholar
  41. Maeno, H., Reyes, P. L., Ueda, T., Rudolph, S. A., and Greengard, P. (1974) Arch. Biochem. Biophys. 164, 551.PubMedCrossRefGoogle Scholar
  42. Martin, J. B., and Doty, D. M. (1949) Anal. Chem. 21, 965.CrossRefGoogle Scholar
  43. Meisler, M. H., and Langan, T. A. (1969) J. Biol. Chem. 244, 4961.PubMedGoogle Scholar
  44. Meyer, F., Heilmeyer, L. M. G., Jr., Haschke, R. H., and Fischer, E. H. (1970) J. Biol. Chem 245, 6642.PubMedGoogle Scholar
  45. Miyamoto, E. (1975) J. Neurochem. 24, 503.PubMedCrossRefGoogle Scholar
  46. Miyamoto, E., Kakiuchi, S., and Kakimoto, Y. (1974) Nature (London) 249, 147.CrossRefGoogle Scholar
  47. Miyamoto, E., Kuo, J-F., and Greengard, P. (1969) J. Biol. Chem. 244, 6395.PubMedGoogle Scholar
  48. O’Sullivan, W. J., and Perrin, D. D. (1964) Biochemistry 3, 18.PubMedCrossRefGoogle Scholar
  49. Plimmer, R. H., and Bayliss, W. (1906) J. Physiol. 33, 439.PubMedGoogle Scholar
  50. Rabinowitz, M., and Lipmann, F. (1960) J. Biol. Chem. 235, 1043.PubMedGoogle Scholar
  51. Reddington, M. (1974) Ph.D. Thesis, London University.Google Scholar
  52. Reddington, M., Rodnight, R., and Williams, M. (1973) Biochem. J. 132, 475.PubMedGoogle Scholar
  53. Reimann, E. M., Walsh, D. A., and Krebs, E. G. (1971) J. Biol. Chem. 246, 1986.PubMedGoogle Scholar
  54. Rodnight, R. (1966) In Protides of the Biological Fluids, 1965, (H. Peeters, ed.), Elsevier, Amsterdam, p. 39.Google Scholar
  55. Rodnight, R. (1971) Handb. Neurochem. 5A, 141.Google Scholar
  56. Rodnight, R. (1975) In Metabolic Compartmentation in the Brain, (D. Schneider and S. Berl, eds.), Plenum Press, in press.Google Scholar
  57. Rodnight, R., and Lavin, B. E. (1964) Biochem. J. 93, 84.PubMedGoogle Scholar
  58. Rodnight, R., and Lavin, B. E. (1966) Biochem. J. 101, 495.PubMedGoogle Scholar
  59. Rodnight, R., and Weller, M. (1971) In Effects of Drugs on Cellular Control Processes, (B. R. Rabin and R. B. Freedman, eds.), Macmillan Press Ltd., London, p. 175.Google Scholar
  60. Rose, S. P. R. (1962) Biochem. J. 83, 614.PubMedGoogle Scholar
  61. Rose, S. P. R., and Heald, P. J. (1961) Biochem. J. 81, 339.PubMedGoogle Scholar
  62. Schiltz, E., and Selseris, C. (1969) Hoppe Seyler Z. Physiol. Chem. 350, 317.PubMedCrossRefGoogle Scholar
  63. Schmidt, G., and Thannhauser, S. J. (1945) J. Biol. Chem. 161, 83.PubMedGoogle Scholar
  64. Schmidt, M. J., and Sokoloff, L. (1973) J. Neurochem. 21, 1193.PubMedCrossRefGoogle Scholar
  65. Schneider, W. E. (1945) J. Biol. Chem. 161, 293.PubMedGoogle Scholar
  66. Sung, M., and Dixon, G. (1970) Proc. Natl. Acad. Sci. (U.S.) 67, 1616.CrossRefGoogle Scholar
  67. Trevor, A. J., and Rodnight, R. (1965) Biochem. J. 95, 889.PubMedGoogle Scholar
  68. Ueda, T., Maeno, H., and Greengard, P. (1973) J. Biol. Chem. 248, 8295.PubMedGoogle Scholar
  69. Wade, H. E., and Morgan, D. M. (1953) Nature (London) 171, 529.CrossRefGoogle Scholar
  70. Walinder, O. (1972) Biochim. Biophys. Acta 258, 411.PubMedGoogle Scholar
  71. Walinder, O. (1973) Biochim. Biophys. Acta 293, 140.PubMedGoogle Scholar
  72. Walsh, D., and Ashby, C. D. (1973) Recent Prog. Horm. Res. 29, 329.PubMedGoogle Scholar
  73. Walsh, D. A., Perkins, J. P., and Krebs, E. G. (1968) J. Biol. Chem. 243, 3763.PubMedGoogle Scholar
  74. Walton, G. M., and Gill, G. N. (1973) Biochemistry 12, 2604.PubMedCrossRefGoogle Scholar
  75. Weller, M. (1972) Ph.D. Thesis, London University.Google Scholar
  76. Weller, M. (1974) Biochim. Biophys. Acta 343, 565.PubMedGoogle Scholar
  77. Weller, M., and Rodnight, R. (1970) Nature (London) 225, 187.CrossRefGoogle Scholar
  78. Weller, M., and Rodnight, R. (1971) Biochem. J. 124, 393.PubMedGoogle Scholar
  79. Weller, M., and Rodnight, R. (1973) Biochem. J. 132, 483.PubMedGoogle Scholar
  80. Weller, M., and Rodnight, R. (1974) Biochem. J. 142, 605.PubMedGoogle Scholar
  81. Williams, M., and Rodnight, R. (1974) Brain Res. 77, 502.PubMedCrossRefGoogle Scholar
  82. Williams, M., and Rodnight, R. (1975) J. Neurochem. 24, 601.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Richard Rodnight
    • 1
  • Martin Reddington
    • 1
  • Maria Gordon
    • 1
  1. 1.Department of BiochemistryInstitute of PsychiatryLondonUK

Personalised recommendations