Skip to main content

Some Experimentally Determined Characteristics of the Turbulence in the Magnetosphere

  • Chapter
Physics of the Hot Plasma in the Magnetosphere

Abstract

The magnetospheric turbulence — by which we here mean all processes which give rise to scattering in configuration or velocity space of particles and waves — affects the hot plasma strongly in several ways: it redistributes energy between the particles themselves and between particles and waves, it redistributes the hot plasma spatially by giving rise to diffusion and it redistributes the particles in pitch angle. The last mentioned effect is in many ways the most important one. This is because the pitch angle diffusion probably is the main loss mechanism for most of the hot plasma in the magnetosphere. The particles which are scattered into the loss cone disappear into the atmosphere and produce excitations, ionizations and heat. Although acceleration processes near the atmosphere certainly play a major role for the production of particle precipitation in discrete auroral forms (see e g Evans in this volume), most of the worldwide loss of hot plasma to the atmosphere is probably caused by pitch angle diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernstein, W., B. Hultqvist and H. Borg, Some implications of low altitude observations of isotropic precipitation of ring current protons beyond the plasmapause, Planet. Space Sci., 22, 767, 1974.

    Article  ADS  Google Scholar 

  • Chappell, C.R., K.K. Harris and G.W. Sharp, A study of the influence of magnetic activity on the location of the plasmapause as measured by 0G0-5, J. Geophys. Res., 75, 50, 1970.

    Article  ADS  Google Scholar 

  • Cornwall, J.M., F.V. Coroniti and R.M. Thorne, A unified theory of SAR arc formation at the plasmapause, J. Geophys. Res., 76, 4428, 1971.

    Article  ADS  Google Scholar 

  • Cornwall, J.M., Precipitation of auroral and ring-current particles by artificial plasma injection, Rev. Geophys. and Space Phys., 10, 993, 1972.

    Article  ADS  Google Scholar 

  • Coroniti, F.V., R.W. Fredericks and R. White, Instability of ring current protons beyond the plasmapause during injection events, J. Geophys. Res., 77, 6243, 1972.

    Article  ADS  Google Scholar 

  • Eather, R.H. and R.L. Carovillano, The ring current as the source region for proton auroras, Cosmic Electrodynamics, 2, 105, 1971.

    Google Scholar 

  • Frank, L.A., Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight, J. Geophys. Res., 76, 2265, 1971.

    Article  ADS  Google Scholar 

  • Hultqvist, B., On the production of magnetic field-aligned electric field by the interaction between the hot magnetospheric plasma and the cold ionosphere, Planet. Space Sci., 19, 749, 1971.

    Article  ADS  Google Scholar 

  • Hultqvist, B., H. Borg, P. Christophersen and W. Riedler, Observations of magnetic field-aligned anisotropy for 1 and 6 keV positive ions in the upper ionosphere, Planet. Space Sci., 12, 279, 1971.

    Article  ADS  Google Scholar 

  • Hultqvist, B., H. Borg, P. Christophersen, W. Riedler and W. Bernstein, Energetic protons in the k energy range and associated k electrons observed at various local times and disturbance levels in the upper ionosphere, NOAA, Technical Report ERL 305 – SEL 29, Boulder, Colorado, 1974.

    Google Scholar 

  • Hultqvist, B., W. Riedler and H. Borg, Ring current protons in the upper ionosphere within the plasmasphere, Kiruna Geophysical Institute, Preprint 74:305, 1974b.

    Google Scholar 

  • Hultqvist, B., The ring current and particle precipitation near the plasmapause. Paper presented at the 2nd Annual Meeting of the European Geophys. Soc., Trieste, 1975; Ann. Geophys. (in print).

    Google Scholar 

  • Kennel, C.F. and J.E. Petschek, Limit of stably trapped particle fluxes, J. Geophys. Res., 71, 1, 1966.

    ADS  Google Scholar 

  • Kennel, C.F., Consequences of a magnetospheric plasma, Rev. Geophys., 7, 379, 1969.

    Article  ADS  Google Scholar 

  • Lyons, L.R., Electron diffusion driven by magnetospheric electrostatic waves, J. Geophys. Res., 79, 575, 1974.

    Article  ADS  Google Scholar 

  • Mizera, P.F., Observations of precipitating protons with ring current energies, J. Geophys. Res., 79, 581, 1974.

    Article  ADS  Google Scholar 

  • O’Brien, B.J., High-latitude geophysical studies with satellite Injun 3, Precipitation of electrons into the atmosphere, J. Geophys. Res., 69, 13, 1964.

    Article  ADS  Google Scholar 

  • Page, D.E. and M.L. Shaw, Some parameters affecting the poleward boundary of trapped electrons, in Earth’s Magnetospehric Processes, (Ed. B.M. McCormac), D. Reidel Publishing Co., Dordrecht, Holland, 1972.

    Google Scholar 

  • Riedler, W., B. Hultqvist and S. Olsen, A satellite instrument for auroral particle measurements using channel multipliers, Arkiv for Geofysik 619, 1971.

    Google Scholar 

  • Smith, P.H. and R.A. Hoffman, Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms, J. Geophys. Res., 79, 966, 1974.

    Article  ADS  Google Scholar 

  • Swift, D.W., A new interpretation of VLF chorus, J. Geophys. Res., 73, 7447, 1968.

    Article  ADS  Google Scholar 

  • Swift, D.W., Particle acceleration by electrostatic waves, J. Geophys. Res., 75, 6324, 1970.

    Article  ADS  Google Scholar 

  • Søraas, F., ESRO 1 A/B observations at high latitudes of trapped and precipitating protons with energies above 100 keV, in Earth’s Magnetospheric Processes, (Ed. B.M. Mormac), D. Reidel Publishing Co., Dordrecht, Holland, 1972.

    Google Scholar 

  • Søraas, F. and L.E. Berg, Correlated satellite measurements of proton precipitation and plasma density, J. Geophys. Res., 79, 5171, 1974.

    Article  ADS  Google Scholar 

  • Williams, D.J., J.N. Barfield and T.A. Fritz, Initial Explorer k5 substorm observations and electric field considerations, J. Geophys. Res., 79, 554, 1974.

    Article  ADS  Google Scholar 

  • Williams, D.J. and L.R. Lyons, The proton ring current and its interaction with the plasmapause; storm recovery phase, J. Geophys. Res., 79, 4195, 1974a.

    Article  ADS  Google Scholar 

  • Williams, D.J. and L.R. Lyons, Further aspects of the proton ring current interaction with the plasmapause: main and recovery phases, J. Geophys. Res., 79, 791, 1974b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Hultqvist, B. (1975). Some Experimentally Determined Characteristics of the Turbulence in the Magnetosphere. In: Hultqvist, B., Stenflo, L. (eds) Physics of the Hot Plasma in the Magnetosphere. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4437-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4437-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4439-1

  • Online ISBN: 978-1-4613-4437-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics