Afferent Input: A Critical Factor in the Ontogenesis of Brain Electrical Activity

  • Peter Kellaway


The existence of critical periods in the ontogenesis of behavior, such as that associated with imprinting (Sluckin 1972), has been well-documented in recent years in morphologic, cytochemical, and electrophysiologic studies of the developing nervous system. Behavioral scientists have suggested that ontogenetic criticality can be understood if growth and behavioral differentiations are based on organizing processes and if organization can be modified only when active processes of organization are in progress (Scott 1962).


Visual Cortex Lateral Geniculate Nucleus Afferent Input Optic Atrophy Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmone Marsan, C. 1961. Electrographic aspects of “epileptic” neuronal aggregates. Epilepsia 2:22.CrossRefGoogle Scholar
  2. Ashton, N., Ward, B., and Serpel, G. 1953. Role of oxygen in the genesis of retrolental fibroplasia: a preliminary report. Br. J. Ophthalmol. 37:513.PubMedCrossRefGoogle Scholar
  3. Baker, F.H., Grigg, P., and von Noorden, G.K. 1974. Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res. 66:185.CrossRefGoogle Scholar
  4. Barlow, H.B., Blakemore, C., and Pettigrew, J.D. 1967. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193:327.Google Scholar
  5. Barlow, H.B., and Pettigrew, J.D. 1971. Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218:98P.Google Scholar
  6. Baxter, B.L. 1966. Effect of visual deprivation during postnatal maturation on the electroencephalogram of the cat. Exp. Neurol. 14:224.PubMedCrossRefGoogle Scholar
  7. Berger, H. 1900. Experimentell-anatomische Studien über die durch den Mangel optischer Reize veranlaBten Entwicklungshemmungen im Occipitallappen des Hundes und der Katze. Arch. Psychiatr. Nervenkr. 33:521.CrossRefGoogle Scholar
  8. Bishop, P.O., Henry, G.H., and Smith, C.J. 1971. Binocular interaction fields of single units in the cat striate cortex. J. Physiol. (Lond.) 216:39.Google Scholar
  9. Blakemore, C., and Cooper, G.F. 1970. Development of the brain depends on the visual environment. Nature (Lond.) 228:477.CrossRefGoogle Scholar
  10. Blakemore, C., and Mitchell, D.E. 1973. Modification by very brief exposure to the visual environment. Nature (Lond.) 241:467.CrossRefGoogle Scholar
  11. Campbell, K. 1951. Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach. Med. J. Aust. 2:48.PubMedGoogle Scholar
  12. Cannon, W.B., and Rosenblueth, A. 1949. The Supersensitivity of Denervated Structures. New York: Macmillan.Google Scholar
  13. Cohen, J., Boshes, L.D., and Snider, R.S. 1961. Electroencephalographic changes following retrolental fibroplasia. Electroencephalogr. Clin. Neurophysiol. 13:914.CrossRefGoogle Scholar
  14. Coleman, P.D., and Riesen, A.H. 1968. Environmental effects on cortical dendritic fields. I. Rearing in the dark. J. Anat. 102:363.PubMedGoogle Scholar
  15. Conel, J.L. 1939. The Postnatal Development of the Human Cerebral Cortex, vol. I. Cambridge, Mass.: Harvard University Press.Google Scholar
  16. Conel, J.L. 1941. The Postnatal Development of the Human Cerebral Cortex, vol. II. Cambridge, Mass.: Harvard University Press.Google Scholar
  17. Conel, J.L. 1947. The Postnatal Development of the Human Cerebral Cortex, vol. III. Cambridge, Mass.: Harvard University Press.Google Scholar
  18. Cook, W.H., Walker, J.H., and Barr, M.L. 1951. A cytological study of transneuronal atrophy in the cat and rabbit. J. Comp. Neurol. 94:267.PubMedCrossRefGoogle Scholar
  19. Cragg, B.G. 1971. The fate of axon terminals in visual cortex during transsynapticatrophy of the lateral geniculate nucleus. Brain Res. 34:53.PubMedCrossRefGoogle Scholar
  20. Detwiler, S.R. 1936. Neuro embryology: An Experimental Study. New York: Macmillan.Google Scholar
  21. Dews, P.B., and Wiesel, T.N. 1970. Consequences of monocular deprivation on visual behaviour in kittens. J. Physiol. (Lond.) 206:437.Google Scholar
  22. Dichter, M., and Spencer, W.A. 1969. Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol. 32:663.PubMedGoogle Scholar
  23. Doty, R.W. 1970. Modulation of visual input by brain-stem systems. In F.A. Young, and D.B. Lindsley (eds.), Early Experience and Visual Information Processing in Perceptual and Reading Disorders, p. 143. Washington, D.C: National Academy of Sciences.Google Scholar
  24. Echlin, F.A. 1959. The supersensitivity of chronically “isolated” cerebral cortex as a mechanism in focal epilepsy. Electroencephalogr. Clin. Neurophysiol. 11:697.PubMedCrossRefGoogle Scholar
  25. Freedman, D.A. 1971. Congenital and perinatal sensory deprivation: Some studies in early development. Am. J. Psychiatry 127:1539.PubMedGoogle Scholar
  26. Freedman, R.D., Mitchell, D.E., and Millodot, M. 1972. A neural effect of partial visual deprivation in humans. Science 175:1384.CrossRefGoogle Scholar
  27. Ganz, L., Fitch, M., and Satterberg, J.A. 1968. The selective effect of visual deprivation on receptive field shape determined neurophysiologically. Exp. Neurol 22:614.PubMedCrossRefGoogle Scholar
  28. Gary, L.J., and Powell, T.P.S. 1971. An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc. R. Soc. Lond. [Biol] 179:41.CrossRefGoogle Scholar
  29. Gibbs, E.L., Fois, A., and Gibbs, F.A. 1955. The electroencephalogram in retrolental fibro-plasia. N Engl. J. Med. 253:1102.PubMedCrossRefGoogle Scholar
  30. Gibbs, F.A., and Gibbs, E.L. 1952. Atlas of Electroencephalography, Vol. 2, Epilepsy, p. 223. Cambridge, Mass.: Addison-Wesley Press.Google Scholar
  31. Glees, P. 1961. Terminal degeneration and trans-synaptic atrophy in the lateral geniculate body of the monkey. In R. Jung and H. Kornhuber (eds.), The Visual System: Neurophysiology and Psychophysics, p. 104. Berlin: Springer-Verlag.Google Scholar
  32. Globus, A., and Scheibel, A.B. 1967. The effect of visual deprivation on cortical neurons—a Golgi study. Exp. Neurol. 19:331.PubMedCrossRefGoogle Scholar
  33. Goldensohn, E.S., and Purpura, D.P. 1963. Intracellular potentials of cortical neurons during focal epileptogenic discharges. Science 139:840.PubMedCrossRefGoogle Scholar
  34. Goldensohn, E.S., Zablow, L., and Stein, B. 1970. Interrelationships of form and latency of spike discharge from small areas of human cortex. Electroencephalogr. Clin. Neurophysiol. 29:321.PubMedCrossRefGoogle Scholar
  35. Guillery, R.W. 1972. Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144:117.PubMedCrossRefGoogle Scholar
  36. Guillery, R.W., and Stelzner, D.J. 1970. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 139:413.PubMedCrossRefGoogle Scholar
  37. Gyllensten, L.J., and Hellstrom, B.E. 1952. Retrolental fibroplasia: Animal experiments. Effect of intermittently administered oxygen and postnatal development of eyes of fullterm mice. Acta Paediatr. 41:577.PubMedCrossRefGoogle Scholar
  38. Harlow, H.F., Harlow, M.K., and Suomi, S.J. 1971. From thought to therapy: Lessons from a primate laboratory. Am. Sci. 59:538.PubMedGoogle Scholar
  39. Hebb, D.O. 1949. The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley & Sons.Google Scholar
  40. Hirsch, H.V.B. 1972. Visual perception in cats after environmental surgery. Exp. Brain Res. 15:405.PubMedCrossRefGoogle Scholar
  41. Hirsch, H.V.B., and Spinelli, D.N. 1970. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168:869.PubMedCrossRefGoogle Scholar
  42. Hirsch, H.V.B., and Spinelli, D.N. 1971. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13:509.Google Scholar
  43. Horn, G., Rose, S.P.R., and Bateson, P.P.G. 1973. Experience and plasticity in the central nervous system. Science 181:506.PubMedCrossRefGoogle Scholar
  44. Hubel, D.H., and Wiesel, T.N. 1963. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26:994.PubMedGoogle Scholar
  45. Hubel, D.H., and Wiesel, T.N. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041.PubMedGoogle Scholar
  46. Hubel, D.H., and Wiesel, T.N. 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419.Google Scholar
  47. Hyden, H. 1943. Protein metabolism in the nerve cell during growth and function. Acta Physiol. Scand. 6(Suppl. 17):3.Google Scholar
  48. Jacobson, M. 1970. Developmental Neurobiology. New York: Holt, Rinehart and Winston.Google Scholar
  49. Kasamatsu, T., and Adey, W.R. 1974a. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. I. Tonic excitability changes. Exp. Brain Res. 20:157.Google Scholar
  50. Kasamatsu, T., and Adey, W.R. 1974b. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. II. Rhythmic EEG burst and PGO waves. Exp. Brain Res. 20:171.Google Scholar
  51. Kellaway, P., Bloxsom, A., and MacGregor, M. 1955. Occipital spike foci associated with retrolental fibroplasia and other forms of retinal loss in children. Electroencephalogr. Clin. Neurophysiol. 7:469.Google Scholar
  52. Kupfer, C., and Palmer, P. 1964. Lateral geniculate nucleus: Histological and cytochemical changes following afferent denervation and visual deprivation. Exp. Neurol. 9:400.PubMedCrossRefGoogle Scholar
  53. Marr, D. 1970. A theory of cerebral neocortex. Proc. R. Soc. Lond. [Biol] 176:161.CrossRefGoogle Scholar
  54. Mason, W.A., Davenport, R.K., Jr., and Menzel, E.W., Jr. 1968. Early experience and the social development of rhesus monkeys and chimpanzees. In G. Newton, and S. Levine (eds.), Early Experience and Behavior, p. 1. Springfield, III.: Charles C Thomas.Google Scholar
  55. Matsumoto, H., Ayala, G.F., and Gumnit, R.J. 1969. Neuronal behavior and triggering mechanisms in cortical epileptic focus. J. Neurophysiol. 32:688.PubMedGoogle Scholar
  56. Matthews, M.R. 1964. Further observations on transneuronal degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. 98:255.PubMedGoogle Scholar
  57. Matthews, M.R., Cowan, W.M., and Powell, T.P.S. 1960. Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. 94:145.PubMedGoogle Scholar
  58. Nikara, T., Bishop, P.O., and Pettigrew, J.D. 1968. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6:353.PubMedCrossRefGoogle Scholar
  59. Owens, W.C, and Owens, E.U. 1949. Retrolental fibroplasia in premature infants. Am. J. Ophthalmol. 32:1.PubMedGoogle Scholar
  60. Patz, A., Hoeck, L.E., and DeLaCruz, E. 1952. Studies of the effect of high oxygen administration in retrolental fibroplasia. Am. J. Ophthalmol. 35:1248.PubMedGoogle Scholar
  61. Pettigrew, J.D., Nikara, T., and Bishop, P.O. 1968. Binocular interaction on single units in the cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6:391.PubMedGoogle Scholar
  62. Prince, D.A. 1968. The depolarization shift in “epileptic” neurons. Exp. Neurol. 21:467.PubMedCrossRefGoogle Scholar
  63. Purpura, D.P. 1964. Relationship of seizure susceptibility to morphologic and physiologic properties of normal and abnormal immature cortex. In P. Kellaway, and I. Petersen (eds.), Neurological and Electroencephalographic Correlative Studies in Infancy, p. 117. New York: Grune & Stratton.Google Scholar
  64. Purpura, D.P., and Housepian, E.M. 1961. Morphological and physiological properties of chronically isolated immature cortex. Exp. Neurol. 4:377.PubMedCrossRefGoogle Scholar
  65. Ramon y Cajal, S. 1959. Degeneration and Regeneration of the Nervous System. New York: Hafner.Google Scholar
  66. Rayport, M. 1968. The Jacksonian hypothesis: An appraisal in the light of single unit recording in focal epileptogenic gray matter in man. Proc. Rudolph Virchow Med. Soc. City N.Y. Suppl. 26:301.Google Scholar
  67. Rose, D., and Blakemore, C. 1974. An analysis of orientation selectivity in the cat’s visual cortex. Exp. Brain Res. 20:1.PubMedCrossRefGoogle Scholar
  68. Sakakura, H., and Doty, R.W. 1969. Bizarre EEG of striate cortex in blind squirrel monkeys. Electroencephalogr. Clin. Neurophysiol. 27:734.Google Scholar
  69. Schmidt, R.P., Thomas, L.B., and Ward, A.A., Jr. 1959. The hyperactive neuron. Microelectrode studies of chronic epileptic foci in monkey. J. Neurophysiol. 22:285.PubMedGoogle Scholar
  70. Scott, J.P. 1962. Critical periods in behavioral development. Science 138:949.PubMedCrossRefGoogle Scholar
  71. Scott, J.S., and Kellaway, P. 1958. Epilepsy of focal origin in childhood. Med. Clin. North Am. 42:415.PubMedGoogle Scholar
  72. Sharpless, S.K. 1969. Isolated and deafferented neurons: Disuse supersensitivity. In H.H. Jasper, A.A. Ward, Jr., and A. Pope (eds.), Basic Mechanisms of the Epilepsies, p. 329. Boston: Little, Brown.Google Scholar
  73. Shlaer, R. 1971. Shift in binocular disparity causes compensatory change in the cortical structure of kittens. Science 173:638.PubMedCrossRefGoogle Scholar
  74. Sluckin, W. 1972. Imprinting and Early Learning, 2nd. ed. London: Methuen.Google Scholar
  75. Smith, J.M.B., and Kellaway, P. 1964a. The natural history and clinical correlates of occipital foci in children. In P. Kellaway, and I. Petersen (eds.), Neurological and Electroencephalographic Correlative Studies in Infancy, p. 230. New York: Grune & Stratton.Google Scholar
  76. Smith, J.M.B., and Kellaway, P. 1964b. Central (Rolandic) foci in children: an analysis of 200 cases. Electroencephalogr. Clin. Neurophysiol. 17:460.Google Scholar
  77. Stillerman, M.L., Gibbs, E.L., and Perlstein, M.A. 1952. Electroencephalographic changes in strabismus. Am. J. Ophthalmol. 35:54.PubMedGoogle Scholar
  78. Valverde, F. 1967. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3:337.PubMedCrossRefGoogle Scholar
  79. Valverde, F. 1968. Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 5:274.PubMedCrossRefGoogle Scholar
  80. Valverde, F., and Esteban, M.E. 1968. Peristriate cortex of mouse: Location and the effects of enucleation on the number of dendritic spines. Brain Res. 9:145.PubMedCrossRefGoogle Scholar
  81. von Gudden, B. 1869. Experimentaluntersuchungen über das peripherische und zentrale Nervensystem. Arch. Psychiatry. 2:693.CrossRefGoogle Scholar
  82. von Noorden, G.K. 1973a. Experimental amblyopia in monkeys. Further behavioral observations and clinical correlations. Invest. Ophthalmol. 12:721.Google Scholar
  83. von Noorden, G.K. 1973b. Histological studies of the visual system in monkeys with experimental amblyopia. Invest. Ophthalmol. 12:727.Google Scholar
  84. von Noorden, G.K., and Dowling, J.E. 1970. Experimental amblyopia in monkeys. II. Behavioral studies in strabismic amblyopia. Arch. Ophthalmol. 84:215.Google Scholar
  85. von Senden, M. 1960. Space and Sight. The Perception of Space and Shape in the Congenitally Blind Before and After Operation. Glencoe, III.: The Free Press.Google Scholar
  86. Ward, A.A., Jr. 1969. The epileptic neuron: Chronic foci in animals and in man. In H.H. Jasper, A.A. Ward, Jr., and A. Pope (eds.), Basic Mechanisms of the Epilepsies, p. 263. Boston: Little, Brown.Google Scholar
  87. Ward, A.A., Jr., and Schmidt, R.P. 1961. Some properties of single epileptic neurons. Arch. Neurol. 5:308.PubMedGoogle Scholar
  88. Wiesel, T.N., and Hubel, D.H. 1963a. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26:978.Google Scholar
  89. Wiesel, T.N., and Hubel, D.H. 1963b. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003.Google Scholar
  90. Wiesel, T.N., and Hubel, D.H. 1965a. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029.Google Scholar
  91. Wiesel, T.N., and Hubel, D.H. 1965b. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28:1060.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Peter Kellaway
    • 1
  1. 1.Blue Bird Clinic Research UnitBaylor College of Medicine, The Methodist HospitalHoustonUSA

Personalised recommendations