Regularity Results for Some Differential Eouations Associated with Maximal Monotone Operators in Hilbert Spaces

  • Viorel Barbu


Let H be a real Hilbert space whose norm and inner product is denoted respectively by | | and (,). A subset A ⊂ H × H is called monotone if
$$ \left( {{{\rm{y}}_1} - {{\rm{y}}_{2,}}{{\rm{x}}_1} - {{\rm{x}}_2}} \right)\,\, \ge \,0\,\,{\rm{for all}}\,\left[ {{{\rm{x}}_{\rm{i}}},{{\rm{y}}_{\rm{i}}}} \right]\,\, \in \,\,{\rm{A}},\,\,{\rm{i}} = \,1,2. $$


Maximal Monotone Real Hilbert Space Regularity Result Nonlinear Evolution Equation Maximal Monotone Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo, 19, p. 295–319 (1972).MathSciNetMATHGoogle Scholar
  2. [2]
    V. Barbu, Sur une problème aux limites pour une class d’equations differentielles du deuxième ordre en t. C.R. Acad. Sc. Paris, t. 274, p. 459–462 (1972).Google Scholar
  3. [3]
    V. Barbu, Regularity properties of some nonlinear evolution equations, Revue Roumaine Math. Pure et Appl. (to appear).Google Scholar
  4. [4]
    H. Brezis, Propriétés régularisantes de certain semigroupes non lineaires, Israel J. Math. Vol. 9, 4, p. 513–534 (1971).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    H. Brezis, Equations d’evolution du second ordre associées à des opérateurs monotones, Israel J. Math. 12, p. 51–60 (1972).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    H. Brezis, Opérateurs maximaux monotones et semi-grupes de contractions dans les espaces de Hilbert. Math. Studies, 5, North Holland, 1973.Google Scholar
  7. [7]
    H. Brezis, Problemes unilatéraux, J. Math. Pures Appl. 51, 1–164, (1972).MathSciNetGoogle Scholar
  8. [8]
    H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear diff. equation, Contributions to Nonlinear Functional Analysis E. Zarnatonello ed. Acad. Press (1971) p. 101–156.Google Scholar
  9. [9]
    M. Crandall and A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct. Analysis, 3, p. 376–418 (1969).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces. Proc. Symp. Pure Math. vol. 14, F. Browder ed. Amer. Math. Soc. p. 138–161 (1970).Google Scholar
  11. [11]
    Y. Konishi, Compacité de resolvantes des opérateurs maximaux cycliquement monotones. Proc. Japan Academy, Vol. 49, p. 303–305 (1973).Google Scholar
  12. [12]
    Y. Komura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan 21, p. 375–402 (1972).MathSciNetCrossRefGoogle Scholar
  13. [13]
    S.G. Krein, Linear Differential Equations in Banach Spaces, Nauka, Moskva (1967).Google Scholar
  14. [14]
    J. L. Lions, Quelques methodes de resolution des problèmes aux limites non-lineaires. Dunod et Gauthier-Villars (1969).MATHGoogle Scholar
  15. J. Moreau, Fonctionnelles Convexes, College de France 1966–1967.Google Scholar
  16. [16]
    R. T. Rockafellar, Convex functions, monotone operators and variational inequalities, “Theory and Applications of Monotone Operators” A. Ghizetti Ed. p. 35–66, Oderisi, Gubio 1969.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1975

Authors and Affiliations

  • Viorel Barbu
    • 1
  1. 1.Faculty of MathematicsUniversity of IaşiIaşiRomania

Personalised recommendations