Skip to main content

Methods of Quantitative X-Ray Analysis Used in Electron Probe Microanalysis and Scanning Electron Microscopy

  • Chapter
Practical Scanning Electron Microscopy

Abstract

In his thesis,(1) Castaing proposed that quantitative electron probe analysis could be carried out using pure elements as standards. This proposal is accepted, of choice or necessity, by most analysts; the accuracy of the procedure is, however, the subject of much debate. Castaing further stated that the ratio of characteristic x-rays generated from element A in the specimen to pure A was equivalent to the concentration of element A in the specimen. This statement is the basis for quantitative electron probe microanalysis. Castaing’s treatment can be represented by the following considerations. The average number of ionizations n per primary beam electron incident with energy E 0 is(1)

$$ n\;{\rm{ = }}\frac{{{N_{0{\rm{\rho }}}}{C_{\rm{A}}}}}{{{A_{\rm{A}}}}}\int_{{E_0}}^{{E_c}} {\frac{Q}{{dE/dX}}{\rm{ }}dE}$$
(1)

where NdE/dX is the mean energy change of an electron in traveling a distance X, N 0 is Avogadro’s number, ρ is the density of the material, A A is the atomic weight of A, C A is the concentration of element A, E c is the critical excitation energy for whatever characteristic x-ray line is of interest, and Q is the ionization cross section, defined as the probability per unit path length of an electron of given energy causing ionization of a particular electron shell (K, L, or M) of an atom in the specimen. The effect of backscattering electrons can be taken into account by introducing a factor R equal to the ratio of x-ray intensity actually generated to that which would have been generated if all of the incident electrons had remained within the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Castaing, Thesis, University of Paris (1951), ONERA Publication No. 55.

    Google Scholar 

  2. D. M. Poole, in Quantitative Electron Probe Microanalysis, (K. F. J. Heinrich, ed.), NSB Special Publication 298 (1968), p. 93.

    Google Scholar 

  3. D. B. Wittry, ASTM Special Technical Publication No. 349 (1963), p. 128.

    Google Scholar 

  4. J. Philibert, in X-Ray Optics and X-Ray Microanalysis, Proceedings of the Third International Symposium, Stanford University (H. H. Pattee, V. E. Cosslett, and A. Engstrom, eds.), Academic Press, New York (1963), p. 379.

    Google Scholar 

  5. P. Duncumb and P. K. Shields, in The Electron Microprobe, Proc. Symp. Electrochem. Soc, Washington, D.C. 1964 (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 284.

    Google Scholar 

  6. R. L. Myklebust and K. F. J. Heinrich, ASTM-STP 485 (1971), p. 232.

    Google Scholar 

  7. K. F. J. Heinrich, D. L. Vieth, and H. Yakowitz, in Advances in X-Ray Analysis, Vol. 9 (1966), p. 208.

    CAS  Google Scholar 

  8. P. S. Ong, in Advances in Electronics and Electron Physics, Supplement 6, Electron Probe Microanalysis, (A. J. Tousimis and L. Marton, eds.), (1969), p. 137.

    Google Scholar 

  9. T. O. Ziebold, The Electron Microanalyzer and Its Applications, MIT Press, Boston, Massachusetts (1965), p. S–5.

    Google Scholar 

  10. E. Lifshin, M. F. Ciccarelli, and R. B. Bolon, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 29.

    Google Scholar 

  11. K. F. J. Heinrich, NBS Technical Note 521 (1969).

    Google Scholar 

  12. L. S. Birks, J. Appl Phys., 32, 387 (1961).

    Article  Google Scholar 

  13. L. S. Birks, J. Appl. Phys., 33, 233 (1962).

    Article  CAS  Google Scholar 

  14. K. F. J. Heinrich, H. Yakowitz, and D. L. Vieth, in Proceedings of the 7th National Conference on Electron Probe Analysis, EPASA, San Francisco (1972), Paper 3.

    Google Scholar 

  15. H. Yakowitz and K. F. J. Heinrich, Mikrochim. Acta, 1968, 183.

    Google Scholar 

  16. D. F. Kyser, in Proceedings of the 6th International Conference on X-Ray Optics and Microanalysis (G. Shinoda, K. Kohra, and T. Ichinokawa, eds.), (1972), p. 147.

    Google Scholar 

  17. P. Duncumb and S. J. B. Reed, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 133.

    Google Scholar 

  18. M. Green and V. E. Cosslett, Proc. Phys. Soc. (London), 78, 1206 (1961).

    Article  CAS  Google Scholar 

  19. H. Bethe, Ann. Phys., 5, 325 (1930).

    Article  CAS  Google Scholar 

  20. P. M. Thomas, U.K. Atomic Energy Authority Report AERE-R 4593 (1964).

    Google Scholar 

  21. K. F. J. Heinrich and H. Yakowitz, Mikrochim. Acta, 1970(1), 123.

    Google Scholar 

  22. M. Green, Thesis, Cambridge University (1964).

    Google Scholar 

  23. G. Springer, Mikrochim. Acta, 1966(3), 587.

    Google Scholar 

  24. J. D. Derian and R. Castaing, in Optique des Rayons X et Microanalyse (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 193.

    Google Scholar 

  25. M. J. Berger and S. M. Seltzer, National Academy of Science, National Research Council Publication 1133, Washington, D.C. (1964), p. 205.

    Google Scholar 

  26. J. Philibert and R. Tixier, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 13.

    Google Scholar 

  27. K. F. J. Heinrich and H. Yakowitz, Mikrochim. Acta, 1968(5), 905.

    Google Scholar 

  28. S. J. B. Reed, Brit. J. Appl. Phys., 16, 913 (1965).

    Article  CAS  Google Scholar 

  29. J. W. Colby, National Lead Co., Ohio Report NLCO-969 (1965).

    Google Scholar 

  30. J. Henoc, K. F. J. Heinrich, and R. L. Myklebust, NBS Technical Note 769 (1973), p. 127.

    Google Scholar 

  31. J. W. Criss, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 52.

    Google Scholar 

  32. J. Henoc, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 197.

    Google Scholar 

  33. R. L. Myklebust, H. Yakowitz, and K. F. J. Heinrich, in Proceedings of the 5th National Conference on Electron Probe Analysis, EPASA, New York (1970), Paper 11.

    Google Scholar 

  34. J. W. Criss and L. S. Birks, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 217.

    Google Scholar 

  35. T. O. Ziebold and R. E. Ogilvie, Anal Chem., 36, 322 (1964).

    Article  CAS  Google Scholar 

  36. H. Yakowitz, ASTM-STP 430 (1968), p. 383.

    Google Scholar 

  37. A. E. Bence and A. Albee, J. Geol 76, 382 (1968).

    Article  CAS  Google Scholar 

  38. K. F. J. Heinrich, R. L. Myklebust, S. D. Rasberry, and R. E. Michaelis, NBS Special Publication 260–28 (1971).

    Google Scholar 

  39. K. Hirokawa, Tohoku Univ., Sendai, Japan.

    Google Scholar 

  40. J. Sweatman and J. V. P. Long, J. Petrology, 10, 332 (1969).

    CAS  Google Scholar 

  41. B. L. Henke and E. S. Ebisu, in Advances in X-Ray Analysis, Vol. 17, Plenum, New York (1974), p. 150.

    Google Scholar 

  42. E. W. White, in Microprobe Analysis (C. A. Andersen, ed.), Wiley-Interscience, New York (1973), p. 349.

    Google Scholar 

  43. L. Curgenven and P. Duncumb, Tube Investments Research Labs Report 303 (1971).

    Google Scholar 

  44. P. Duncumb, in Proc. EMAG, Conference Series No. 10, Institute of Physics, London (1971), p. 132.

    Google Scholar 

  45. R. B. Bolon and E. Lifshin, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 31.

    Google Scholar 

  46. J. W. Colby, D. R. Wonsidler, and D. K. Conley, in Proceedings of the 4th National Conference on Electron Probe Analysis, EPASA (1969), Paper 9.

    Google Scholar 

  47. S. J. B. Reed, J. Phys. D (Appl. Phys.), 4, 1910 (1971).

    Article  CAS  Google Scholar 

  48. R. B. Bolon and E. Lifshin, SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 285.

    Google Scholar 

  49. D. F. Kyser and K. Murata, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 28.

    Google Scholar 

  50. E. Preuss (ed.), Quantitative Analysis with Electron Microprobes and Secondary Ion Mass Spectroscopy, Kernforschungsanlage, Jülich, Germany (1972).

    Google Scholar 

  51. A. N. Broers, in Microprobe Analysis (C. A. Andersen, ed.), Wiley, New York, (1973), p. 83.

    Google Scholar 

  52. J. C. Russ, in SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 113.

    Google Scholar 

  53. P. Duncumb, J. de Microscopie, 7, 581 (1968).

    Google Scholar 

  54. M. H. Jacobs and J. Baborovska, in Proceedings of the 5th European Conference on Electron Microscopy, Institute of Physics, London (1972), p. 136.

    Google Scholar 

  55. G. Cliff and G. W. Lorimer, in Proceedings of the 5th European Conference on Electron Microscopy, Institute of Physics, London (1972), p. 140.

    Google Scholar 

  56. T. A. Hall, in Proc. EMAG, Conference Series No. 10, Institute of Physics, London (1971), p. 146.

    Google Scholar 

  57. J. L. Bomback, in SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 97.

    Google Scholar 

  58. L. S. Birks, Electron Probe Microanalysis, 2nd ed., Wiley—Interscience, New York (1971), p. 41.

    Google Scholar 

  59. R. E. Michaelis, H. Yakowitz, and G. A. Moore, J. Res. NBS 68A, 343 (1964).

    CAS  Google Scholar 

  60. J. I. Goldstein, F. J. Majeske, and H. Yakowitz, in Advances in X-Ray Analysis, Vol. 10, Plenum Press, New York (1967), p. 431.

    Google Scholar 

  61. K. F. J. Heinrich, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York, (1966), p. 296.

    Google Scholar 

  62. H. Yakowitz, C. E. Fiori, and R. E. Michaelis, NBS Special Publication 260–22 (1971).

    Google Scholar 

  63. B. L. Bracewell and W. J. Veigele, Developments in Applied spectroscopy, Vol. 9, Plenum Press, New York (1971), p. 357.

    Google Scholar 

  64. J. W. Colby, Advances in X-Ray Analysis, Vol. 11, Plenum Press, New York (1968), p. 287.

    Google Scholar 

  65. B. A. Cooke and E. A. Stewardson, Brit. J. Appl. Phys. 15, 1315 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Yakowitz, H. (1975). Methods of Quantitative X-Ray Analysis Used in Electron Probe Microanalysis and Scanning Electron Microscopy. In: Goldstein, J.I., Yakowitz, H. (eds) Practical Scanning Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4422-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4422-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4424-7

  • Online ISBN: 978-1-4613-4422-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics