Advertisement

Methods of Quantitative X-Ray Analysis Used in Electron Probe Microanalysis and Scanning Electron Microscopy

  • H. Yakowitz

Abstract

In his thesis,(1) Castaing proposed that quantitative electron probe analysis could be carried out using pure elements as standards. This proposal is accepted, of choice or necessity, by most analysts; the accuracy of the procedure is, however, the subject of much debate. Castaing further stated that the ratio of characteristic x-rays generated from element A in the specimen to pure A was equivalent to the concentration of element A in the specimen. This statement is the basis for quantitative electron probe microanalysis. Castaing’s treatment can be represented by the following considerations. The average number of ionizations n per primary beam electron incident with energy E 0 is(1)
$$ n\;{\rm{ = }}\frac{{{N_{0{\rm{\rho }}}}{C_{\rm{A}}}}}{{{A_{\rm{A}}}}}\int_{{E_0}}^{{E_c}} {\frac{Q}{{dE/dX}}{\rm{ }}dE}$$
(1)
where NdE/dX is the mean energy change of an electron in traveling a distance X, N 0 is Avogadro’s number, ρ is the density of the material, A A is the atomic weight of A, C A is the concentration of element A, E c is the critical excitation energy for whatever characteristic x-ray line is of interest, and Q is the ionization cross section, defined as the probability per unit path length of an electron of given energy causing ionization of a particular electron shell (K, L, or M) of an atom in the specimen. The effect of backscattering electrons can be taken into account by introducing a factor R equal to the ratio of x-ray intensity actually generated to that which would have been generated if all of the incident electrons had remained within the specimen.

Keywords

Atomic Number Operating Voltage Monte Carlo Program Mass Attenuation Coefficient Relative Intensity Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Castaing, Thesis, University of Paris (1951), ONERA Publication No. 55.Google Scholar
  2. 2.
    D. M. Poole, in Quantitative Electron Probe Microanalysis, (K. F. J. Heinrich, ed.), NSB Special Publication 298 (1968), p. 93.Google Scholar
  3. 3.
    D. B. Wittry, ASTM Special Technical Publication No. 349 (1963), p. 128.Google Scholar
  4. 4.
    J. Philibert, in X-Ray Optics and X-Ray Microanalysis, Proceedings of the Third International Symposium, Stanford University (H. H. Pattee, V. E. Cosslett, and A. Engstrom, eds.), Academic Press, New York (1963), p. 379.Google Scholar
  5. 5.
    P. Duncumb and P. K. Shields, in The Electron Microprobe, Proc. Symp. Electrochem. Soc, Washington, D.C. 1964 (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 284.Google Scholar
  6. 6.
    R. L. Myklebust and K. F. J. Heinrich, ASTM-STP 485 (1971), p. 232.Google Scholar
  7. 7.
    K. F. J. Heinrich, D. L. Vieth, and H. Yakowitz, in Advances in X-Ray Analysis, Vol. 9 (1966), p. 208.Google Scholar
  8. 8.
    P. S. Ong, in Advances in Electronics and Electron Physics, Supplement 6, Electron Probe Microanalysis, (A. J. Tousimis and L. Marton, eds.), (1969), p. 137.Google Scholar
  9. 9.
    T. O. Ziebold, The Electron Microanalyzer and Its Applications, MIT Press, Boston, Massachusetts (1965), p. S–5.Google Scholar
  10. 10.
    E. Lifshin, M. F. Ciccarelli, and R. B. Bolon, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 29.Google Scholar
  11. 11.
    K. F. J. Heinrich, NBS Technical Note 521 (1969).Google Scholar
  12. 12.
    L. S. Birks, J. Appl Phys., 32, 387 (1961).CrossRefGoogle Scholar
  13. 13.
    L. S. Birks, J. Appl. Phys., 33, 233 (1962).CrossRefGoogle Scholar
  14. 14.
    K. F. J. Heinrich, H. Yakowitz, and D. L. Vieth, in Proceedings of the 7th National Conference on Electron Probe Analysis, EPASA, San Francisco (1972), Paper 3.Google Scholar
  15. 15.
    H. Yakowitz and K. F. J. Heinrich, Mikrochim. Acta, 1968, 183.Google Scholar
  16. 16.
    D. F. Kyser, in Proceedings of the 6th International Conference on X-Ray Optics and Microanalysis (G. Shinoda, K. Kohra, and T. Ichinokawa, eds.), (1972), p. 147.Google Scholar
  17. 17.
    P. Duncumb and S. J. B. Reed, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 133.Google Scholar
  18. 18.
    M. Green and V. E. Cosslett, Proc. Phys. Soc. (London), 78, 1206 (1961).CrossRefGoogle Scholar
  19. 19.
    H. Bethe, Ann. Phys., 5, 325 (1930).CrossRefGoogle Scholar
  20. 20.
    P. M. Thomas, U.K. Atomic Energy Authority Report AERE-R 4593 (1964).Google Scholar
  21. 21.
    K. F. J. Heinrich and H. Yakowitz, Mikrochim. Acta, 1970(1), 123.Google Scholar
  22. 22.
    M. Green, Thesis, Cambridge University (1964).Google Scholar
  23. 23.
    G. Springer, Mikrochim. Acta, 1966(3), 587.Google Scholar
  24. 24.
    J. D. Derian and R. Castaing, in Optique des Rayons X et Microanalyse (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 193.Google Scholar
  25. 25.
    M. J. Berger and S. M. Seltzer, National Academy of Science, National Research Council Publication 1133, Washington, D.C. (1964), p. 205.Google Scholar
  26. 26.
    J. Philibert and R. Tixier, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 13.Google Scholar
  27. 27.
    K. F. J. Heinrich and H. Yakowitz, Mikrochim. Acta, 1968(5), 905.Google Scholar
  28. 28.
    S. J. B. Reed, Brit. J. Appl. Phys., 16, 913 (1965).CrossRefGoogle Scholar
  29. 29.
    J. W. Colby, National Lead Co., Ohio Report NLCO-969 (1965).Google Scholar
  30. 30.
    J. Henoc, K. F. J. Heinrich, and R. L. Myklebust, NBS Technical Note 769 (1973), p. 127.Google Scholar
  31. 31.
    J. W. Criss, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 52.Google Scholar
  32. 32.
    J. Henoc, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), NBS Special Publication 298 (1968), p. 197.Google Scholar
  33. 33.
    R. L. Myklebust, H. Yakowitz, and K. F. J. Heinrich, in Proceedings of the 5th National Conference on Electron Probe Analysis, EPASA, New York (1970), Paper 11.Google Scholar
  34. 34.
    J. W. Criss and L. S. Birks, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 217.Google Scholar
  35. 35.
    T. O. Ziebold and R. E. Ogilvie, Anal Chem., 36, 322 (1964).CrossRefGoogle Scholar
  36. 36.
    H. Yakowitz, ASTM-STP 430 (1968), p. 383.Google Scholar
  37. 37.
    A. E. Bence and A. Albee, J. Geol 76, 382 (1968).CrossRefGoogle Scholar
  38. 38.
    K. F. J. Heinrich, R. L. Myklebust, S. D. Rasberry, and R. E. Michaelis, NBS Special Publication 260–28 (1971).Google Scholar
  39. 39.
    K. Hirokawa, Tohoku Univ., Sendai, Japan.Google Scholar
  40. 40.
    J. Sweatman and J. V. P. Long, J. Petrology, 10, 332 (1969).Google Scholar
  41. 41.
    B. L. Henke and E. S. Ebisu, in Advances in X-Ray Analysis, Vol. 17, Plenum, New York (1974), p. 150.Google Scholar
  42. 42.
    E. W. White, in Microprobe Analysis (C. A. Andersen, ed.), Wiley-Interscience, New York (1973), p. 349.Google Scholar
  43. 43.
    L. Curgenven and P. Duncumb, Tube Investments Research Labs Report 303 (1971).Google Scholar
  44. 44.
    P. Duncumb, in Proc. EMAG, Conference Series No. 10, Institute of Physics, London (1971), p. 132.Google Scholar
  45. 45.
    R. B. Bolon and E. Lifshin, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 31.Google Scholar
  46. 46.
    J. W. Colby, D. R. Wonsidler, and D. K. Conley, in Proceedings of the 4th National Conference on Electron Probe Analysis, EPASA (1969), Paper 9.Google Scholar
  47. 47.
    S. J. B. Reed, J. Phys. D (Appl. Phys.), 4, 1910 (1971).CrossRefGoogle Scholar
  48. 48.
    R. B. Bolon and E. Lifshin, SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 285.Google Scholar
  49. 49.
    D. F. Kyser and K. Murata, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA, New Orleans (1973), Paper 28.Google Scholar
  50. 50.
    E. Preuss (ed.), Quantitative Analysis with Electron Microprobes and Secondary Ion Mass Spectroscopy, Kernforschungsanlage, Jülich, Germany (1972).Google Scholar
  51. 51.
    A. N. Broers, in Microprobe Analysis (C. A. Andersen, ed.), Wiley, New York, (1973), p. 83.Google Scholar
  52. 52.
    J. C. Russ, in SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 113.Google Scholar
  53. 53.
    P. Duncumb, J. de Microscopie, 7, 581 (1968).Google Scholar
  54. 54.
    M. H. Jacobs and J. Baborovska, in Proceedings of the 5th European Conference on Electron Microscopy, Institute of Physics, London (1972), p. 136.Google Scholar
  55. 55.
    G. Cliff and G. W. Lorimer, in Proceedings of the 5th European Conference on Electron Microscopy, Institute of Physics, London (1972), p. 140.Google Scholar
  56. 56.
    T. A. Hall, in Proc. EMAG, Conference Series No. 10, Institute of Physics, London (1971), p. 146.Google Scholar
  57. 57.
    J. L. Bomback, in SEM/1973 Proceedings of the 6th Annual SEM Symposium, IITRI, Chicago, Illinois (1973), p. 97.Google Scholar
  58. 58.
    L. S. Birks, Electron Probe Microanalysis, 2nd ed., Wiley—Interscience, New York (1971), p. 41.Google Scholar
  59. 59.
    R. E. Michaelis, H. Yakowitz, and G. A. Moore, J. Res. NBS 68A, 343 (1964).Google Scholar
  60. 60.
    J. I. Goldstein, F. J. Majeske, and H. Yakowitz, in Advances in X-Ray Analysis, Vol. 10, Plenum Press, New York (1967), p. 431.Google Scholar
  61. 61.
    K. F. J. Heinrich, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York, (1966), p. 296.Google Scholar
  62. 62.
    H. Yakowitz, C. E. Fiori, and R. E. Michaelis, NBS Special Publication 260–22 (1971).Google Scholar
  63. 63.
    B. L. Bracewell and W. J. Veigele, Developments in Applied spectroscopy, Vol. 9, Plenum Press, New York (1971), p. 357.Google Scholar
  64. 64.
    J. W. Colby, Advances in X-Ray Analysis, Vol. 11, Plenum Press, New York (1968), p. 287.Google Scholar
  65. 65.
    B. A. Cooke and E. A. Stewardson, Brit. J. Appl. Phys. 15, 1315 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. Yakowitz
    • 1
  1. 1.Institute for Materials Research, Metallurgy DivisionNational Bureau of StandardsUSA

Personalised recommendations