Skip to main content

Abstract

A large number of interactions occur when a focused electron beam impinges on a specimen surface. Among the signals produced are secondary electrons, backscattered electrons, characteristic and continuum x-rays, Auger electrons, and photons of various energies. These signals are obtained from specific emission volumes within the sample, and these emission volumes are strong functions of the electron beam energy E 0 and the atomic number of the specimen Z. In fact the resolution for a particular signal in the electron microprobe or scanning electron microscope is primarily determined by its excitation volume and not by the electron probe size. This chapter will discuss scattering and electron penetration in solids in order to provide a basis for understanding how the electron beam interacts with the sample. In addition we will discuss, in turn, each of the signals as well as the spatial resolution that can be obtained in these instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. A. Bethe, Ann. Phys. (Leipzig), 5, 325 (1930).

    CAS  Google Scholar 

  2. R. R. Wilson, Phys. Rev., 60, 749 (1941).

    Article  CAS  Google Scholar 

  3. P. Duncumb and S. J. B. Reed, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), National Bureau of Standards, Special Publication 298, Washington, D.C. (1968), p. 133.

    Google Scholar 

  4. V. E. Cosslett and R. N. Thomas, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 248.

    Google Scholar 

  5. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys., 15, 883 (1964).

    Article  CAS  Google Scholar 

  6. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys., 15, 1283 (1964).

    Article  CAS  Google Scholar 

  7. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys., 16, 779 (1965).

    Article  CAS  Google Scholar 

  8. K. Murata, T. Matsukawa and R. Shimizu. Jap. J. Appl. Phys., 10, 678 (1971).

    Article  CAS  Google Scholar 

  9. P. Duncumb and P. K Shields, Brit. J. Appl. Phys., 14, 617 (1963).

    Article  CAS  Google Scholar 

  10. K. Kanaya and S. Okayama, J. Phys. D. Appl. Phys., 5, 43 (1972).

    Article  CAS  Google Scholar 

  11. G. Shinoda, K. Murata and R. Shimizu, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.), National Bureau of Standards, Special Publication 298, Washington, D.C. (1968), p. 155.

    Google Scholar 

  12. K. F. J. Heinrich, in X-ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 159.

    Google Scholar 

  13. H. E. Bishop, in “X-ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965” (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 153.

    Google Scholar 

  14. M. P. Palluel, C. R. Acad. Sci., Paris, 224, 1492 (1947).

    Google Scholar 

  15. J. W. Colby, W. N. Wise, and D. K. Conley, in Advances in X-Ray Analysis (J. B. Newkirk and G. R. Mallett, eds.), 10, 447, Plenum Press, New York (1967).

    Google Scholar 

  16. E. F. H. St.G. Darlington, in V International Congress on X-Ray Optics and Microanalysis, Tubingen, 1968 (G. Möllenstedt and K. H. Gaukler, eds.), Springer Verlag, Berlin (1969), p. 76.

    Google Scholar 

  17. R. Shimizu and K. Murata, J. Appl. Phys. 42, 387 (1971).

    Article  CAS  Google Scholar 

  18. O. C. Wells, Appl. Phys. Letters, 16, 151 (1970).

    Article  CAS  Google Scholar 

  19. O. Hachenberg and W. Brauer, in Advances in Electronics and Electron Physics (L. Marton, ed.), Vol. 11, Academic Press, New York (1959), p. 413.

    Google Scholar 

  20. D. B. Wittry, in X-Ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 168.

    Google Scholar 

  21. L. Reimer, in Scanning Electron Microscopy: Systems and Applications 1973, Conference Series 18, Institute of Physics, London (1973).

    Google Scholar 

  22. H. Seiler, Z. Angew. Phys., 22, 249 (1967).

    CAS  Google Scholar 

  23. T. E. Everhart, O. C. Wells, and C. W. Oatley, J. Electron, and Control, 7, 97 (1959).

    Article  CAS  Google Scholar 

  24. K. Murata, in Scanning Electron Microscopy/1973, IITRI, Chicago, Illinois (1973), p. 267.

    Google Scholar 

  25. A. N. Broers, in Scanning Electron Microscopy/1970, IITRI, Chicago, Illinois (1970), p. 3.

    Google Scholar 

  26. B. D. Cullity, Elements of X-Ray Diffraction Addison-Wesley, Reading, Massachusetts (1956).

    Google Scholar 

  27. S. T. Stephenson, in Handbuch der Physik (S. Fliigge, ed.), Springer-Verlag, Berlin (1957), p. 337.

    Google Scholar 

  28. H. A. Kramers, Phil. Mag. 46, 836 (1923).

    CAS  Google Scholar 

  29. E. Lifshin, in “Summer Course Notes—Electron Probe Microanalysis and Scanning Electron Microscopy, June 19–23, 1972 at Lehigh University” (1972).

    Google Scholar 

  30. C. Barrett and T. B. Massalski, Structure of Metals, 3rd ed., McGraw-Hill, New York (1966).

    Google Scholar 

  31. E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis, Plenum Press. New York (1970).

    Google Scholar 

  32. J. A. Bearden, NYO-10586, U.S. Atomic Energy Commission, Oak Ridge, Tennessee (1964).

    Google Scholar 

  33. K. F. J. Heinrich, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 296.

    Google Scholar 

  34. B. L. Henke and E. S. Ebisu, in Advances in X-Ray Analysis, Vol. 17, Plenum Press, New York (1974), p. 150.

    Google Scholar 

  35. M. Green, in X-Ray Optics and X-Ray Microanalysis, III International Symposium, Stanford University, Stanford, Calif., 1962 (H. A. Pattee, V. E. Cosslett, and A. Engstrom, eds.), Academic Press, New York (1962), p. 361.

    Google Scholar 

  36. M. Green and V. E. Cosslett, Proc. Phys. Soc. (London), 78, 1206 (1961).

    Article  CAS  Google Scholar 

  37. R. Castaing, in Advances in Electronics and Electron Physics (L. Marton, ed.), Vol. 13, Academic Press, New York (1960), p. 317.

    Google Scholar 

  38. P. Duncumb, in Proceedings of the Second International Symposium on X-Ray Microscopy and X-Ray Microanalysis, Stockholm, 1960 (A. Engström, V. E. Cosslett, and H. Pattee, eds.), Elsevier, Amsterdam (1960), p. 365.

    Google Scholar 

  39. C. A. Andersen and M. F. Hasler, in X-Ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 310.

    Google Scholar 

  40. S. J. B. Reed, in X-Ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 339.

    Google Scholar 

  41. J. I. Goldstein, in Metallography—A Practical Tool for Correlating the Structure and Properties of Materials, ASTM Special Technical Publication 557, ASTM (1974), p. 86.

    Google Scholar 

  42. S. J. B. Reed and J. V. P. Long, in X-Ray Optics and X-Ray Microanalysis, III International Symposium, Stanford University, Stanford, Calif. 1962 (H. A. Pattee, V. E. Cosslett, and A. Engstrom, eds.), Academic Press, New York (1963), p. 317.

    Google Scholar 

  43. J. I. Goldstein and R. E. Ogilvie, in X-Ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Herman, Paris (1966), p. 594.

    Google Scholar 

  44. F. Maurice, R. Seguin, and J. Henoc, in X-Ray Optics and Microanalysis, IV International Congress on X-Ray Optics and Microanalysis, Orsay, 1965 (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 357.

    Google Scholar 

  45. N. C. MacDonald, in Scanning Electron Microscopy/1971, IITRI, Chicago, Illinois (1971), p. 91.

    Google Scholar 

  46. D. F. Stein, R. E. Weber, and P. W. Palmberg, J. Metals, 23, 39 (1971).

    CAS  Google Scholar 

  47. L. A. Harris, J. Appl. Phys., 39, 1419 (1968).

    Article  CAS  Google Scholar 

  48. P. W. Palmberg and T. N. Rhodin, J. Appl. Phys. 39, 2425 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Goldstein, J.I. (1975). Electron Beam-Specimen Interaction. In: Goldstein, J.I., Yakowitz, H. (eds) Practical Scanning Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4422-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4422-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4424-7

  • Online ISBN: 978-1-4613-4422-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics