Riboflavin pp 49-79 | Cite as

Analysis of Riboflavin and its Derivatives in Biologic Fluids and Tissues

  • Herman Baker
  • Oscar Frank


Flavins are present in all biologic fluids and tissues. Most biologic materials contain many metabolically active compounds incorporating riboflavin derivatives. The most common biologically important flavins are riboflavin and its nucleotides: riboflavin-5’-phosphate (flavin mono-nucleotide, FMN), and the intramolecular complex of FMN with adenosine-5’-monophosphate (flavin adenine dinucleotide, FAD). The latter two are the principal forms of riboflavin found in nature. FMN and FAD are protein-bound, with the latter usually the most abundant (60–90%) in natural products.(37) Significant amounts of free riboflavin are confined to milk (35) and urine,(37) in which it is, accordingly, dialyzable. In living cells, riboflavin generally occurs as FMN and FAD bound to specific proteins to form oxidative enzymes; these functional forms of flavin are not assayable without proteolytic digestion.(16) In most analytical procedures, it is necessary to treat natural products with acid or enzymes for maximal values, that is, to liberate riboflavin from its protein moiety thus making it more readily extractable for assay. If FMN or FAD content is to be measured, special nonhydrolytic extraction procedures are required.(28)


Glutathione Reductase Benzyl Alcohol Biologic Fluid Flavin Adenine Dinucleotide Glutathione Reductase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . Alfrey, C. P., and Lane, M. 1970. The effect of riboflavin deficiency on erythropoiesis, Seminars in Hematol. 7: 49–54.Google Scholar
  2. 2.
    . Baker, H. 1967. Thiamine discussion, Amer. J. Clin. Nutr.20: 543–546.Google Scholar
  3. 3.
    . Baker, H., and Frank, o. 1968. Riboflavin, in: “Clinical Vitaminology; Methods & Interpretation,” pp. 45–53, Interscience Pubs., New York.Google Scholar
  4. 4.
    . Baker, H., Frank, O., Feingold, S., Christakis, G., and Ziffer, H. 1967. Vitamins, total cholesterol, and triglycerides in 642 New York City School Children, Amer. J. Clin. Nutr.20: 850–857.Google Scholar
  5. 5.
    . Baker, H., Frank, P., Feingold., S., Gellene, R. A., Leevy, C. M., and Hutner, S. H. 1966. A riboflavin assay suitable for clinical use and nutritional surveys, Amer. J. Clin. Nutr.19: 17–26.Google Scholar
  6. 6.
    . Baker, H., Frank, O., and Hutner, S. H. 1969. Subclinical malnutrition, Science172: 313.CrossRefGoogle Scholar
  7. 7.
    . Bamji, M. B. 1969. Glutathione reductase activity in red blood cells and riboflavin nutritional status in humans, Clin. Chim Acta26: 263–269.CrossRefGoogle Scholar
  8. 8.
    . Bamji, M. B. 1971. Assessment of riboflavin deficiency in humans, J. Sci. & Ind. Research, 29: S44 - S46.Google Scholar
  9. 9.
    . Bamji, M. B., and Sharada, D. 1971. Physiological implications of reduced glutathione reductase activity of red blood cells in human ariboflavinosis, Clin. Chim. Act31: 409–12.CrossRefGoogle Scholar
  10. 10.
    . Bessey, O. A., Lowry, O. H., and Love, R. H. 1949. Fluoremetric measure of the nucleotides of riboflavin and their concentration in tissues, J. Biol. Chem.180: 755–769.Google Scholar
  11. 11.
    . Beutler, E. 1969. The correction of glutathione reductase deficiency by riboflavin administration, J. Clin. Invest.48: 1957.CrossRefGoogle Scholar
  12. 12.
    . Burch, H. B. 1957. Fluorometric assay of FAD, FMN and riboflavin, in: “Methods in Enzymology,” ( S. P. Colowick and N. O. Kaplan, eds.), Vol. 3, pp. 960–962, Academic Press, New York.CrossRefGoogle Scholar
  13. 13.
    . Burch, H. B., Bessey, 0. A., and Lowry, 0. H. 1948. Fluorometric measurements of riboflavin and its natural derivatives in small quantities of blood serum and cells, J. Biol. Chem.175: 457–470.Google Scholar
  14. 14.
    . Buzard, J. A., and Kopko, F. 1963. The flavin requirement of some inhibition characteristics of rat tissue glutathione reductase, J. Biol. Chem. 238: 464–468.Google Scholar
  15. 15.
    . Buzard, J. A., Kopko, F., and Paul, M. F. 1960. Inhibition of glutathione reductase by Nitrofurantoin, J. Lab. Clin. Med. 56: 884–890.Google Scholar
  16. 16.
    . Cerletti, P., Strom, R., and Giordano, M. G. 1963. Flavin peptides in tissues: The prosthetic group of succinic dehydrogenase, Arch Biochem. Biophys. 101: 423–428.Google Scholar
  17. 17.
    . Fass, S., and Rivlin, R. S. 1969. Regulation of riboflavin-metabolizing enzymes in riboflavin deficiency, Amer. J. Physiol. 217: 988–991.Google Scholar
  18. 18.
    . Fennelly, J., Frank, O., Baker, H., and Leevy, C. M. 1964. Peripheral neuropathy of the alcoholic. I. aetiological role of aneurin and other B-complex vitamins, Brit Med. J. 2: 1290–1292.Google Scholar
  19. 19.
    . Foy, H., Kandi, A., Harris, E. B., and Preston, J. K. 1968. Isotopic and cytological estimation of marrow erythroid activity in normal and riboflavin deficient baboons, Acta Haematol. 39: 118–127.CrossRefGoogle Scholar
  20. 20.
    . Frank, O., Luisada-Opper, A., Sorrell, M. F., Thomson, A. D., and Baker, H. 1971. Vitamin deficits in severe alcoholic fatty liver of man calculated from multiple reference units, Exptl. & Molecular Pathol.15: 191–197.CrossRefGoogle Scholar
  21. 21.
    . Glatzle, D., Weber, F., and Wiss, o. 1968. Enzymatic test for the detection of a riboflavin deficiency. NADPH dependent glutathione reductase of red cells and its activation by FAD in vitro. Experientia24: 1122–1123.CrossRefGoogle Scholar
  22. 22.
    . Glatzle, D., Körner, W. F., Christeller, S., and Wiss, o. 1970. Method for the detection of a biochemical riboflavin deficiency, Intern. J. Vit. Res.40: 166–183.Google Scholar
  23. 23.
    Goldsmith, G. A. 1964. The B-vitamins: Thiamine, Riboflavin, Niacin, in: “Nutrition”(G. H. Beaton and E. W. McHenry, eds.), Vol. 2, Academic Press, New York.Google Scholar
  24. 24.
    . Halevy, S., and Guggenheim, K. 1958. Metabolism of pteroylglutamic acid and liver nucleic acids levels in certain vitamin deficiencies, J. Nutr.65: 77–88.Google Scholar
  25. 25.
    . Horwitt, M. K. 1960. Thiamine, riboflavin, and niacin, in: “Modern Nutrition in Health and Disease” (M. G. Wohl, and A. S. Goodhart, eds.), 2d ed., pp. 334–337, Lea & Febiger, Philadelphia.Google Scholar
  26. 26.
    . Kidder, G. W., and Dewey, V. 1951. The biochemistry of ciliates in pure culture, in: “Biochemistry and Physiology of Protozoa,” ( A. Lwoff, ed.), Vol. 1, pp. 323–400, Academic Press, New York.Google Scholar
  27. 27.
    . Kornberg, H. A., Langdon, R. S., and Cheldelin, V. H. 1948. Microbiological assay for riboflavin, Anal. Chem.20: 81–83.CrossRefGoogle Scholar
  28. 28.
    Koziol, J. 1971. Fluorometric analyses of riboflavin and its coenzymes, in: “Methods in Enzymology” (D. B. McCormick, and L. D. Wright, eds.), Vol. 18, Part B, pp. 253–290, Academic Press, New York.Google Scholar
  29. 29.
    . Lane, M., Alfrey, C. P., Mengel, C. E., Doherty, M. A., and Doherty, J. 1964. The rapid induction of human riboflavin deficiency with galactoflavin, J. Clin. Invest.43: 357–373.CrossRefGoogle Scholar
  30. 30.
    . Langer, B. W., Jr., and Charoensiri, S. 1966. Growth response of Lactobacillus casei(ATCC 7469) to riboflavin, FMN and FAD, Proc. Soc. Exptl. Biol. & Med.122: 151–152.Google Scholar
  31. 31.
    . Leevy, C. M., Baker, H., tenHove, W., Frank, O., and Cherrick, G. R. 1965a. B-complex vitamins in liver disease of the alcoholic, Amer. J. Clin. Nutr.16: 339–346.Google Scholar
  32. 32.
    . Leevy, C. M., Cardi, L., Frank, O., Gellene, R. A., and Baker, H. 1965b. Incidence and significance of hypovitaminemia in a randomly selected municipal hospital population, Amer. J. Clin. Nutr.17: 259–271.Google Scholar
  33. 33.
    . Long, W. K., and Carson, P. E. 1961. Increased erythrocyte glutathione reductase activity in diabetes mellitus. Biochem. & Biophys. Research Comm.5: 394–399.CrossRefGoogle Scholar
  34. 34.
    . Manual for Nutrition Surveys. 1963. Urinary Riboflavin by a Modification of the Method of Slater and Morell, 2d ed., pp. 140–142. Interdepartmental Committee on Nutrition for National Defense, U.S. Government Printing Office, Washington, D.C.Google Scholar
  35. 35.
    . Modi, V. V., and Owen, E. C. 1957. Flavin adenine dinucleotide metabolism and lactation, Biochim. Biophys. Acta24: 423–425.CrossRefGoogle Scholar
  36. 36.
    . Morel!, D. B., and Slater E. C. 1946. Modification of fluorometric method of detecting riboflavin in biological materials, Biochem. J.40: 644–652.Google Scholar
  37. 37.
    . Pearson, W. N. 1967. Riboflavin, in: “The Vitamins” ( P. György, and W. N. Pearson, eds.), Vol. 7, pp. 99–136, Academic Press, New York.Google Scholar
  38. 38.
    . Prosky, L., Burch, H. B., Bejrablaya, D., Lowry, O. H. and Combs, A. M. 1964. The effects of galactoflavin on riboflavin enzymes and coenzymes, J. Biol. Chem.239: 2691–2695.Google Scholar
  39. 39.
    . Rivlin, R. S. 1970. Riboflavin metabolism, New Eng. J. Med.283: 463–472.CrossRefGoogle Scholar
  40. 40.
    . Slater, E. C., and Morell, D. B. 1946. Fluorometric determination of riboflavin in urine, Biochem. J.40: 652–657.Google Scholar
  41. 41.
    Snell, E. E. 1950, “Vitamin Methods” (P. György, ed.), Vol. 1, pp. 340–505, Academic Press, New York.Google Scholar
  42. 42.
    . Snell, E. E. 1954. Microbiological methods, in: “The Vitamins” ( W. H. Sebrell, Jr., and R. S. Harris, eds.), Vol. 3, pp. 372–373, Academic Press, New York.Google Scholar
  43. 43.
    . Tamburro, C., Frank O., Thomson, A. D., Sorrell, M. F., and Baker, H. 1971. Interactions of folate, nicotinate, and riboflavin deficiencies in rats. Nutr. Reports Intern.4: 185–189.Google Scholar
  44. Tillotson, J. A., and Sauberlich, H. E. 1971. Effect of riboflavin depletion and repletion on erythrocyte glutathione reductase in the rat, J. Nutr. 101:1459–1466. Google Scholar
  45. 45.
    . Tillotson, J. A., and Baker, E. M. 1972. An enzymatic measurement of the riboflavin status in man, Amer. J. Clin. Nutr.25: 425–431.Google Scholar
  46. 46.
    . Windmueller, H. G., Anderson, A. A., and Mickelson, o. 1964. Elevated riboflavin levels in urine of fasting subjects, Amer. J. Clin. Nutr.15: 73–83.Google Scholar
  47. 47.
    Yagi, K. 1971. Simultaneous microdetermination of riboflavin, FMN and FAD in animal tissues, in: “Methods in Enzymology” (D. B. McCormick, and L. D. Wright, eds.), Vol. 18, Part B, pp. 290–305, Academic Press, New York.Google Scholar
  48. 48.
    . Yang, C. S., Charalampos, A., and McCormick, D. B. 1964. Microbiological and enzymatic assays of riboflavin analogues, J. Nutr.84: 167–172.Google Scholar
  49. 49.
    . Ziffer, H., Frank, O., Christakis, G., Talkington, L., and Baker, H. 1967. Data analysis strategy for nutritional survey of 642 New York City school children, Amer. J. Clin. Nutr.20: 858–865.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Herman Baker
    • 1
  • Oscar Frank
    • 1
  1. 1.New Jersey Medical SchoolCollege of Medicine and Dentistry of New JerseyUSA

Personalised recommendations