The Application of Computers in Radiochemistry

  • R. K. Webster


This chapter provides an introduction to on-line computing, and is intended as a summary of basic concepts to support the rest of the book. The aim is therefore to outline principles, and to describe a few typical examples or applications rather than to provide an extensive review of the literature. Computers now fill a very varied role in most branches of radiochemistry, and applications range from the direct use of computers as instruments (i.e. on-line computing) to complex data manipulation (off-line applications). To provide some coherence in the treatment, the major part of this chapter focusses on gamma-spectrometry and activation methods. An outline is given of the basic principles of multichannel analysers, and a simple account of the operation and programming of a small computer. This is followed by a fairly detailed description of the organisation, operation and use of a small computer as a single gamma-spectrometer, to illustrate techniques, advantages and limitations. Further sections summarise alternative methods of using dedicated computer units, for example for fully automated activation systems, and the use of medium-sized computers for simultaneous operation as several independent gamma-spectrometers. A final section summarises computer applications in some other branches of radiochemistry.


Magnetic Tape Multichannel Analyser Small Computer Program Counter Arithmetic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. B. PIERCE, R. K. WEBSTER, R. HALLETT and D. MAPPER, Proceedings of the International Conference on Modern Trends in Activation Analysis, NBS Special Publication 312 Vol. II, p. 1116, (1969).Google Scholar
  2. 2.
    A. LEWIS, U.K. At. Energy Authority Report R-5844, Harwell (1968).Google Scholar
  3. 3.
    ESONE Standard 1968: CAMAC, A Modular Instrumentation System for Data Handling. Euratom Report EUR 1831e.Google Scholar
  4. 4.
    T. B. PIERCE, P. F. PECK and K. HAINES, J. Radioan. Chem., 14, 229 (1973).CrossRefGoogle Scholar
  5. 5.
    T. B. PIERCE, Institution of Electronic and Radio Engineers Conference on Laboratory Automation, Conference Proceedings No. 20 (1970).Google Scholar
  6. 6.
    T. B. PIERCE and D. A. NEWTON, to be published.Google Scholar
  7. 7.
    C. J. THOMPSON, Nuclear Applications, 6, 559 (1969).Google Scholar
  8. 8.
    C. J. THOMPSON, AECL Report CPSR-235 (1969).Google Scholar
  9. 9.
    M. DEBRUIN and P. M. J. KORTHOVEN, Anal. Chem., 44, 2382 (1972).CrossRefGoogle Scholar
  10. 10.
    J. A. KEENAN and G. B. LARRABEE, Chemical Instrumentation, 3, 125 (1971).CrossRefGoogle Scholar
  11. 11.
    C. De WISPELAERE, J. OP De BEECK and J. HOSTE, Anal. Chem., 45, 547 (1973).CrossRefGoogle Scholar
  12. 12.
    E. SCHONFELD, Nucl. Instr. and Methods, 42, 213 (1966).CrossRefGoogle Scholar
  13. 13.
    J. P. OP De BEECK, J. Radioan. Chem., 11, 283 (1972).CrossRefGoogle Scholar
  14. 14.
    P. J. M. Korthoven, Interuniversity Reactor Institute, Delft, IRI Report 133–72–09 (1972).Google Scholar
  15. 15.
    E. ACHTERBERG, F. C. IGLESIAS, A. E. JECH, J. A. MORAGUES, M. PÉREZ, J. J. ROSSI, W. SCHEUER and J. A. SUAREZ, IEEE, Trans. on NucL Sci, NS-19 No. 53 (1972).Google Scholar
  16. 16.
    P. De REGGE, Nucl. Instr. and Methods, 102, 269 (1972).CrossRefGoogle Scholar
  17. 17.
    G. C. BEST, IEEE Trans. on Nucl Sci., NS-13 566 (1966).CrossRefGoogle Scholar
  18. 18.
    S. B. WRIGHT and M. G. SILK, AFIPS Conf. Proc. 33, Pt. 2, 1968 Fall Joint Computer Conference, San Francisco, p. 1099 (1968).Google Scholar
  19. 19.
    J. W. MCMILLAN and J. W. HAYNES, Proc. Soc. Anal. Chem., 7, 202 (1970).Google Scholar
  20. 20.
    J. G. AUSTIN, R. C. M. BARNES and P. J. B. FERGUS, U.K. At. Energy Authority Report R-5529 (1967).Google Scholar
  21. 21.
    G. C. BEST and I. N. HOOTON, Proc. ISPRA Nuclear Electronics Symp., Euratom Report EUR 4289e, 305 (1969).Google Scholar
  22. 22.
    L. SALMON and M. G. CREEVY, Proc. I.A.E.A. Symp. on Nuclear Techniques in Environmental Pollution, 147 (1971).Google Scholar
  23. 23.
    N. I. SAX and J. C. DALY, Nuclear Applications and Technology, 8, 516 (1970).Google Scholar
  24. 24.
    R. T. BELL and H. QVERAS, IBM J. of Res. and Dey., 13 (1) 104 (1969).CrossRefGoogle Scholar
  25. 25.
    J. C. BRUN, F. PICARD, R. SELLEM and G. VERROUST, IEEE Trans. on Nucl. Sci., NS-19 No. 1 654 (1972).CrossRefGoogle Scholar
  26. 26.
    A. LANGSFORD, O. N. JARVIS and C. WHITEHEAD, U.K. At. Energy Authority Report R-6832 (1971).Google Scholar
  27. 27.
    J. L. SPRATT, The Current Status of Liquid Scintillation Counting. (E. D. Bransome, Jr., ed.), p. 349 Grune and Stratton, New York, (1970).Google Scholar
  28. 28.
    M. F. GROWER and E. D. BRANSOME, The Current Status of Liquid Scintillation Counting. (E. D. Bransome, Jr., ed.), p. 356 Grune and Stratton, New York, (1970).Google Scholar
  29. 29.
    R. L. LITLE, The Current Status of Liquid Scintillation Counting. (E. D. Bransome, Jr. ed.), p. 371 Grune and Stratton, New York, (1970).Google Scholar
  30. 30.
    G. F. CRAMER, M. NICHOLSON, C. MOORE and K. TENG, Intern. J. Appl. Radiation Isotopes, 22, 17 (1971).CrossRefGoogle Scholar
  31. 31.
    A. R. REICH, J. Radioan. Chem. 6, 437 (1970).CrossRefGoogle Scholar
  32. 32.
    Y. ASHKENAZI and I. CARMI, Nucl. Instr. and Methods, 89, 125 (1970).CrossRefGoogle Scholar
  33. 33.
    E. B. CHAIN, A. E. LOWE and K. R. L. MANSFORD, J. Chromatog., 53, 293 (1970).CrossRefGoogle Scholar
  34. 34.
    T. O. SEIM and S. PRYDZ, J. Chromatog., 73, 173 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. K. Webster
    • 1
  1. 1.Applied Chemistry DivisionA.E.R.E.Harwell, Didcot, OxfordshireUK

Personalised recommendations