Advertisement

Gamma-Ray Spectrometry

  • D. F. Covell

Abstract

Gamma-ray spectrometry by the method of pulse-height analysis makes possible the direct determination of individual radionuclides in a gamma-emitting sample. Such determinations are possible because the method provides a basis for the identification of specific nuclear transitions, and these, in turn, are characteristic of specific radionuclides. The method has proven to be easy to use, highly sensitive and fast, and has been applied routinely, with good success, to analytical problems in radiochemistry. Thus, samples containing complex mixtures of radionuclides, with activities ranging from the nanocurie to the picocurie level, are readily measured, non-destructively, in periods of time ranging from a few seconds to several hours.

Keywords

Pair Production Scintillation Detector Semiconductor Detector Radiochemical Analysis Gate Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. DAVISSON, in Alpha, Beta and Gamma-Ray Spectroscopy. (K. Siegbahn, ed.) North-Holland Publ. Co., Amsterdam p. 37 (1965).Google Scholar
  2. 2.
    R. L. HEATH. Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, 2nd ed., USAEC Report IDO-16880–1 (1964).Google Scholar
  3. 3.
    S. C. CURRAN, Luminescence and the Scintillation Counter, Academic Press, Inc., New York (1953).Google Scholar
  4. 4.
    J. B. BIRKS, The Theory and Practice of Scintillation Counting, The Macmillan Co., New York (1964).Google Scholar
  5. 5.
    W. J. VAN SCIVER, IRE Trans. on Nucl. Sci., NS-3, No. 4, 39, 1956.Google Scholar
  6. 6.
    W. J. VAN SCIVER, Phys. Rev., 120, 1193 (1960).Google Scholar
  7. 7.
    C. D. ZERBY, A. MEYER and R. B. MURRAY, NucL Inst. and Methods, 12, 115 (1961).Google Scholar
  8. 8.
    A. MEYER and R. B. MURRAY, IRE Trans. on Nucl. Sci., NS-7, No. 2–3, 22 (1960).Google Scholar
  9. 9.
    R. B. MURRAY and A. MEYER, Phys. Rev., 122, 815 (1961).Google Scholar
  10. 10.
    R. B. MURRAY, in Nuclear Instruments and Their Uses. ( A. H. Snell, ed.) p. 82. John Wiley & Sons, Inc., New York (1962).Google Scholar
  11. 11.
    R. G. KAUFMAN, W. B. HADLEY and H. N. HERSH, IEEE Trans on Nucl. Sci., NS-17, No. 3, 82 (1970).Google Scholar
  12. 12.
    R. HOFSTADTER, Phys. Rev., 74, 100 (1948).Google Scholar
  13. 13.
    D. ENGELKEMEIR, Rev. Sci. Inst., 27, 589 (1956).Google Scholar
  14. 14.
    J. A. NEMILOV, J. J. LOMONOSOV, A. N. PESAREVESKI, L. V. SOSHIN and E. D. TETERIN, Izvestia Academia Nauk, SSSR, 24, No. 2, 257 (1959).Google Scholar
  15. 15.
    W. W. MANAGAN, IRE Trans. on Nucl Sci., NS-9, No. 3, 1 (1962).Google Scholar
  16. 16.
    R. W. PERKINS, Nucl. Inst. and Methods, 33, 71 (1965).Google Scholar
  17. 17.
    N. A. WOGMAN, D. E. ROBERTSON and R. W. PERKINS, Nucl. Instr. and Methods, 50, 1, (1967).Google Scholar
  18. 18.
    J. H. NEILER and P. R. BELL, in Alpha, Beta, and Gamma-Ray Spectroscopy. ( K. Siegbahn, ed.) p. 245. North Holland Publ. Co., Amsterdam (1965).Google Scholar
  19. 19.
    B. A. EULER, D. F. COVELL and S. YAMAMOTO, NucL Inst. and Methods, 72, 143 (1969).Google Scholar
  20. 20.
    E. A. WOLICKI, R. JASTROW and F. BROOKS, Calculated Efficiencies of NaI Crystals, NRL Report 4833 (1956).Google Scholar
  21. 21.
    S. H. VEGORS, L. L. MARSDEN and R. L. HEATH, Calculated Efficiencies of Cylindrical Radiation Detectors, USAEC Report IDO16370 (1958).Google Scholar
  22. 22.
    C. M. DAVISSON and L. A. BEACH, A study of Photons in Sodium Iodide Scintillation Crystals, NRL Report 5408 (1959).Google Scholar
  23. 23.
    R. GUNNINK and A. W. STONER, Anal. Chem., 33, 1311 (1961).Google Scholar
  24. 24.
    W. F. MILLER and W. J. SNOW, Nucleonics, 19, No. 11, 174 (1961).Google Scholar
  25. 25.
    M. L. VERHEIJKE, Int. J. of App. Rad. and Isotopes, 13, 583 (1962).Google Scholar
  26. 26.
    R. W. ENGSTROM, R. G. STOUDENHEIMER and A. M. GLOVER, Nucleonics, 10, No. 4, 58 (1952).Google Scholar
  27. 27.
    IRE Publication No. 62, IRE Standards on Electron Tubes, Methods of Testing, 1962, IRE 7. Sl (1962), Pt. 5, Sect 7.Google Scholar
  28. 28.
    JEDEC Publication No. 50, Relative Spectral Response Data for Photosensitive Devices, Electronic Industries Association, Washington, D.C. (1964).Google Scholar
  29. 29.
    J. SHARPE, IEEE Trans. on Nucl. Sci., NS-9, No. 3, 54 (1962).Google Scholar
  30. 30.
    E. H. EBERHARDT, IEEE Trans. on Nucl. Sci., NS-14, No. 2, 7 (1967).Google Scholar
  31. 31.
    S. J. ROTH, IRE Trans. on Nucl. Sci., NS-7, No. 2–3, 57 (1960).Google Scholar
  32. 32.
    C. R. KERNS, IEEE Trans. on Nucl. Sci., NS-14, No. 1, 449 (1967).Google Scholar
  33. 33.
    A. Z. SCHWARZSCHILD and E. K. WARBURTON, Ann. Rev. Nucl. Sci., p. 265. Annual Reviews Inc., Palo Alto, Calif. (1968).Google Scholar
  34. 34.
    L. CATHEY, IRE Trans. on Nucl. Sci., NS-5, No. 3, 109 (1958).Google Scholar
  35. 35.
    D. F. COVELL and B. A. EULER, in Proceedings of the 1961 International Conference: ‘Modern Trends in Activation Analysis’, pp. 1215 (1961).Google Scholar
  36. 36.
    L. A. WEBB and R. J. JOHNSON, Phys. Rev. 98, 234-A (1955).Google Scholar
  37. 37.
    W. P. BALL, R. BOOTH, and M. H. MACGREGOR, Bull. Am. Phys. Soc., 31, 183 (1956).Google Scholar
  38. 38.
    F. E. KINARD, Nucleonics, 15, No. 4, 92 (1957).Google Scholar
  39. 39.
    R. E. ROHDE, IEEE Trans. on Nucl. Sci., NS-12, No. 1, 16 (1965).Google Scholar
  40. 40.
    E. BREITENBERGER, Prong. in Nucl. Sci.,NS-14, No.1, 438 (1967).Google Scholar
  41. 41.
    P. S. TAKHAR, IEEE Trans. on Nucl. Sci., NS-14, No. 1, 438 (1967).Google Scholar
  42. 42.
    J. R. PRESCOTT and P. S. TAKHAR, IRE Trans. on Nucl. Sci., NS-9, No. 3, 36 (1962).Google Scholar
  43. 43.
    R. E. SIMON and B. F. WILLIAMS, IEEE Trans. on Nucl. Sci., NS-15, No. 3, 167 (1968).Google Scholar
  44. 44.
    G. A. MORTON, H. M. SMITH, JR. and H. R. KRALL, IEEE Trans. on Nucl. Sci., NS-16, No. 1, 92 (1969).Google Scholar
  45. 45.
    H. R. KRALL, F. A. HELVY and D. E. PERSYK, IEEE Trans. on NucL Sei., NS-17, No. 3, 71 (1970).Google Scholar
  46. 46.
    G. DEARNALEY and D. C. NORTHROP, Semiconductor Counters for Nuclear Radiations, 2nd ed., E. & F. N. Spon Limited, London (1966).Google Scholar
  47. 47.
    D. A. BROMLEY, IEEE Trans. on Nucl. Sci., NS-9, No. 3, 135 (1962).Google Scholar
  48. 48.
    G. L. MILLER, W. M. GIBSON and P. F. DONOVAN, Ann. Rev. Nucl. Sci., 12, pp. 189–220. Annual Reviews Inc., Palo Alto, Calif. (1962).Google Scholar
  49. 49.
    G. T. EWAN and A. J. TAVENDALE, Can. J. of Physics, 42, 2286 (1964).Google Scholar
  50. 50.
    G. DEARNALEY, A. T. G. FERGUSON and G. C. MORRISON, IRE Trans. on Nucl. Sci., NS-9, No. 3, 174 (1962).Google Scholar
  51. 51.
    D. C. CAMP, Applications and Optimization of the Lithium-Drifted Germanium Detector System, Lawrence Radiation Laboratory Report, UCRL-50156 (1967).Google Scholar
  52. 52.
    H. R. BOWMAN, E. K. HYDE, S. G. THOMPSON and R. C. JARED, Applications of High-Resolution Semiconductors in X-Ray Emission Spectrography, Lawrence Radiation Laboratory Report UCRL-16485 (1965).Google Scholar
  53. 53.
    S. YAMAMOTO, Anal. Chem., 41, 337 (1969).Google Scholar
  54. 54.
    W. SHOCKLEY, Electrons and Holes in Semiconductors, p. 214, Van Nostrand, Princeton, N.J. (1950).Google Scholar
  55. 55.
    P. L. PHELPS, IEEE Trans. on Nucl. Sci., NS-15, No. 1, 376 (1968).Google Scholar
  56. 56.
    G. DEARNALEY, P. E. GIBBONS, and R. ELLIS, IEEE Trans. on Nucl. Sci., NS-17, No. 3, 282 (1970).Google Scholar
  57. 57.
    H. L. MALM and I. L. FOWLER, IEEE Trans. on Nucl. Sci., NS-13, No. 1, 62 (1966).Google Scholar
  58. 58.
    H. L. MALM and I. L. FOWLER, Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 237, Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  59. 59.
    E. W. SAUNDERS and C. J. MAXWELL, IEEE Trans. on Nucl. Sci., NS-15, No. 1, 423 (1968).Google Scholar
  60. 60.
    B. LALOVIC, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller and R. L. Chase, eds.) p. 230. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  61. 61.
    J. E. CLINE, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 241. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  62. 62.
    G. T. EWAN and A. J. TAVENDALE, Can. J. of Physics, 42, 2286 (1964).Google Scholar
  63. 63.
    K. M. WAINIO and G. F. KNOLL, Nuc. Inst. and Methods, 44, 213 (1966).Google Scholar
  64. 64.
    N. U. De CASTRO FARIA and R. J. LEVESQUE, Nuc. Inst. and Methods, 46, 325 (1967).Google Scholar
  65. 65.
    R. L. HEATH, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 247. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  66. 66.
    F. J. WALTER, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 214. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  67. 67.
    R. L. GRAHAM, I. K. MACKENZIE, and G. T. EWAN, IEEE Trans. on Nucl. Sci., NS-13, No. 1, 72 (1966).Google Scholar
  68. 68.
    A. ALBERIGI QUARANTA, M. MARTINI, and G. OTTAVIANI, IEEE Trans. on Nucl. Sci., NS-16, No. 2, 35 (1969).Google Scholar
  69. 69.
    J. A. MIEHE and P. SIFFERT, IEEE Trans. on Nucl. Sci., NS-17, No. 5, 8 (1970).Google Scholar
  70. 70.
    B. EULER, Nucl. Inst. and Methods, 61, 211 (1968).Google Scholar
  71. 71.
    A. A. DELUCCHI and A. E. GREENDALE, Phys. Rev. C, 1, 1491 (1970).Google Scholar
  72. 72.
    D. C. CAMP, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 693. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  73. 73.
    A. R. SAYRES a,nd J. A. BAICKER, IEEE Trans. on NucL Sci., NS-15, No. 3, 393 (1968).Google Scholar
  74. 74.
    J. M. PALMS, R. E. WOOD, and O. H. PUCKETT, IEEE Trans. on Nuci. Sci., NS-15, No. 3, 397 (1968).Google Scholar
  75. 75.
    J. A. COOPER, N. A. WOGMAN and R. W. PERKINS, IEEE Trans. on Nucl. Sci., NS-15, No. 3, 407 (1968).Google Scholar
  76. 76.
    F. P. BRAUER and R. E. CONNALLY, Trans. Am. Nucl. Soc., 6, 174 (1963).Google Scholar
  77. 77.
    D. F. CROUCH and R. L. HEATH, USAEC Rep., IDO-16923 (1963).Google Scholar
  78. 78.
    R. L. HEATH, W. W. BLACK, and J. E. CLINE, IEEE Trans. on Nucl. Sci., NS-13, No. 3, 445 (1966).Google Scholar
  79. 79.
    E. FAIRSTEIN and J. HAHN, Nucleonics, 23, No. 7, 56 (1965).Google Scholar
  80. 80.
    E. FAIRSTEIN and J. HAHN, Nucleonics, 23, No. 9, 81 (1965).Google Scholar
  81. 81.
    E. FAIRSTEIN and J. HAHN, Nucleonics, 23, No. 11, 50 (1965).Google Scholar
  82. 82.
    E. FAIRSTEIN and J. HAHN, Nucleonics, 24, No. 1, 54 (1966).Google Scholar
  83. 83.
    E. FAIRSTEIN and J. HAHN, Nucleonics, 24, No. 3, 68 (1966).Google Scholar
  84. 84.
    E. FAIRSTEIN, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 411. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  85. 85.
    C. W. WILLIAMS, IEEE Trans. on Nucl. Sci., NS-15, No. 1, 297 (1968).Google Scholar
  86. 86.
    F. S. GOULDING, D. A. LANDIS, and R. H. PEHL, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller and R. L. Chase, eds.) p. 455. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  87. 87.
    M. KONRAD, in Semiconductor Nuclear-Particle Detectors and Circuits. (W. L. Brown, W. A. Higinbotham, G. L. Miller, and R. L. Chase, eds.) p. 731. Publication 1593, National Academy of Sciences, Wash., D.C. (1969).Google Scholar
  88. 88.
    R. E. CONNALLY, W. A. MITZLAFF and F. P. BRAUER, IEEE Trans. on Nucl. Sci., NS-17, No. 3, 440 (1970).Google Scholar
  89. 89.
    D. E. FREDERICK and T. MARSHALL, IEEE Trans. on Nucl. Sci., NS-13, No. 1, 144 (1966).Google Scholar
  90. 90.
    L. J. LIDOFSKY, IEEE Trans. on Nucl. Sci., NS-15, No. 1, 93 (1968).Google Scholar
  91. 91.
    D. S. GEMMELL, IEEE Trans. on Nucl Sci., NS-13, No. 1, 158 (1966).Google Scholar
  92. 92.
    L. ROBINSON, IEEE Trans. on NucL Sci., NS-13, No. 1, 161 (1966).Google Scholar
  93. 93.
    J. B. BROBERG, IEEE Trans. on NucL Sci., NS-13, No. 1, 192 (1966).Google Scholar
  94. 94.
    J. M. WYCKOFF, IEEE Trans. on Nucl. Sci., NS-13, No. 1, 199 (1966).Google Scholar
  95. 95.
    W. LEE, Anal. Chem., 31, 800 (1959).Google Scholar
  96. 96.
    D. F. COVELL, Anal. Chem., 31, 1785 (1959).Google Scholar
  97. 97.
    L. SALMON, in Application of Computers to Nuclear and Radiochemistry. (G. D. O’Kelley, ed.) p. 165. Publication 3107, National Academy of Sciences, Wash., D.C. (1963).Google Scholar
  98. 98.
    W. L. NICHOLSON, J. E. SCHLOSSER and F. P. BRAUER, Nucl. Inst. and Methods, 25, 45 (1963).Google Scholar
  99. 99.
    M. A. HOGAN, S. YAMAMOTO and D. F. COVELL, Nucl. Inst. and Methods, 80, 61 (1970).Google Scholar
  100. 100.
    H. DE WAARD, Nucleonics, 13, No. 7, 36 (1955).Google Scholar
  101. 101.
    R. A. DUDLEY and R. SCARPATETTI, Nucl_ Inst. and Methods, 25, 297 (1964).Google Scholar
  102. 102.
    R. L. HEATH, Nucleonics, 20, No. 5, 67 (1962).Google Scholar
  103. 103.
    R. M. PARR and H. F. LUCAS, Jr., IEEE Trans. on Nucl. Sci., NS-11, No. 3, 349 (1964).Google Scholar
  104. 104.
    D. F. COVELL,NucL Inst. and Methods, 36, 229 (1965).Google Scholar
  105. 105.
    J. B. MARION, Nucl. Data, Sect.. A, 4, 301 (1968).Google Scholar
  106. 106.
    D. F. COVELL, Nucl. Inst. and Methods, 22, 101 (1963).Google Scholar
  107. 107.
    D. F. COVELL, Nucl. Inst. and Methods, 47, 125 (1967).Google Scholar
  108. 108.
    J. I. TROMBKA, Jet-Propulsion Laboratory Technical Report, JPLTR-32–373 (1962).Google Scholar
  109. 109.
    E. SCHONFELD, A. H. KIBBEY and W. DAVIS, Jr., Nucl. Inst. and Methods, 45, 1 (1966).Google Scholar
  110. 110.
    S. YAMAMOTO and M. BROWN, Int. J. of Appl. Rad. and Isotopes, 20, 209 (1969).Google Scholar
  111. 111.
    D. F. COVELL, M. BROWN and S. YAMAMOTO, Nucl. Inst. and Methods, 80, 55 (1970).Google Scholar
  112. 112.
    R. GUNNINK, R. A. MEYER, J. B. NIDAY and R. P. ANDERSON, NucL Inst. and Methods, 65, 26 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • D. F. Covell
    • 1
  1. 1.U.S. Naval Ordnance LaboratoryWhite Oak, Silver SpringUSA

Personalised recommendations