Advertisement

Ontogeny of T Cell Function in the Fetal Lamb

  • Arthur M. Silverstein
  • Shraga Segal

Abstract

The maturation of the ability of mammalian fetuses to mount active immunologic responses following antigen stimulus appears to follow a well-defined and precisely timed sequence. Competence to respond to some antigens arises very early in gestation, while other antigens are unable to stimulate active immune responses until later in gestation or even during the neonatal period. Thus, for each species or inbred strain, the earliest appearance of antibody formation to a given antigen, or of such other phenomena as allograft rejection, appears to representa very discrete differentiative event. It would also seem clear that this type of stepwise immunologic maturation is based upon a series of individual developmental events, rather than the abrupt appearance of a single general immunologic control mechanism. The apparently general nature of this sequential maturation of immunologic competence is supported by data in such disparate species as the fetal lamb (1, 2), the opossum (3), and the mouse (4).

Keywords

Allograft Rejection Diphtheria Toxoid Dinitro Phenyl Specific Helper Fetal Lamb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M Silverstein, J. W. Uhr, K. L. Kraner, and R. J Lukes, J. Exp. Med. 117:799, 1963.PubMedCrossRefGoogle Scholar
  2. 2.
    A. M. Silverstein, in: P. Liacopoulos and J. Panijel, Eds., Phylogenic and Ontogenic Study of the Immune Response and its Contribution to the Immunological Theory, p. 221„ Paris, INSERM, 1973.Google Scholar
  3. 3.
    D. T. Rowlands, Jr., D. Blakeslee, and E. Angala, J. Immunol. 112:2148, 1974Google Scholar
  4. 4.
    W. K. Sherwin and D. T. Rowlands, Jr., J. Immunol. 113:1353, 1974.PubMedGoogle Scholar
  5. 5.
    A„ M. Silverstein and S. Segal, J. Exp„ Med. (in press).Google Scholar
  6. 6.
    K. Rajewsky, V. Schirrmacher, S. Nase, and N. K. Jerne, J. Exp. Med. 129:1131, 1969.PubMedCrossRefGoogle Scholar
  7. 7.
    D. H. Katz, W. E. Paul, E. A. Goidl, and B. Benacerraf, J. Exp. Med. 132:261, 1970.PubMedCrossRefGoogle Scholar
  8. 8.
    O. Mäkelä, Immunology 10:81, 1966.PubMedGoogle Scholar
  9. 9.
    A. R. Hayward and J. F. Soothill, in: Ontogeny of Acquired Immunity, Ciba Foundation Symposium, New York, Elsevier, 1972.Google Scholar
  10. 10.
    J. M. Dwyer and I. R. Mackay, Immunology 23:870, 1972.Google Scholar
  11. 11.
    J. M. Decker, J. Clarke, L. M. Bradley, A. Miller, and E. E. Sercarz, J. Immunol. 113:1823, 1974.PubMedGoogle Scholar
  12. 12.
    J. M. Decker and E. E. Sercarz, Nature 252:416, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    J. F. A. P. Miller and G. F. Mitchell, Transplantation Rev. 1:3, 1969.Google Scholar
  14. 14.
    . A. M. Silverstein and R. A. Prendergast, in: J. Šterzl and I. Řiha, Eds., Developmental Aspects of Antibody Formation and Structure, p. 69. Prague, Czech Academy of Sciences, 1970.Google Scholar
  15. 15.
    G. J. Cole and B. Morris, Aust, J. Exp. Biol. Med. Sci. 49:33, 1971.CrossRefGoogle Scholar
  16. 16.
    A. M. Silverstein and R. A. Prendergast, in: B. D.Jankovic and K. Isakovic, Eds., Microenvironmental Aspects of Immunity, p. 383, New York, Plenum Press, 1973.Google Scholar
  17. 17.
    A. Mo Silverstein and S. Segal, unpublished observations.Google Scholar
  18. 18.
    F. S. Rosen, Ped. Clin, N. America 21:533, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Arthur M. Silverstein
    • 1
    • 2
  • Shraga Segal
    • 2
    • 1
  1. 1.The Wilmer InstituteJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Cell BiologyWeizmann InstituteRehovotIsrael

Personalised recommendations