Skip to main content

Red Cell Interactions with the Microcirculation

  • Chapter
  • 64 Accesses

Abstract

We have measured RBC velocity profiles for mammalian arterioles and venules from high-speed cinematographic motion pictures. Measurements were made at 320× and 400× optical magnification over an averaging time period of 10 ms. In vivo profiles are uniformly nonsymmetrical, the RBCs exhibit rotation, and they frequently deviate sidewise from the overall axial direction of motion. In general, this is more pronounced on the venous side. Since all of the profiles are time variant and the average values are synchronous with the midstream velocity, individual RBC velocities will vary about the average. Profiles become more blunted in vessels with smaller diameters. In vessels below 16 μm diameter, the velocity gradients between adjacent RBCs are quite small; for large vessels, recognizable profiles develop and become fully developed in blood vessels above 30 μm in diameter. This blunting is further affected by the midstream velocity and the local hematocrit; when the velocity is reduced below 1.2 mmls and/or an increased hematocrit is present, the profile becomes more blunted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Bugliarello G., and Hayden F. W., 1963, Detailed characteristics of the flow of blood in vitro, Trans. Soc. Rheol. 7:209.

    Article  Google Scholar 

  • Goldsmith H., 1972, The flow of model particles and blood cells and its relation to thrombogenesis, in: Progress in Hemostasis and Thrombosis, Vol. I (T. H. Spaets, ed.), pp. 97–139, Grune and Stratton, New York.

    Google Scholar 

References

  • Bollinger A., Butti P., Barras J. P., Trachsler H., and Siegenthaler W., 1974, Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique, Microvasc. Res. 7:61.

    Article  PubMed  CAS  Google Scholar 

  • Butti P., Intaglietta M., Reimann H., Holliger C., Bollinger A., and Anliker M., 1976, Capillary red blood cell velocity measurements in human nailfold by videodensitometric method, Microvasc. Res. (In press).

    Google Scholar 

  • Fung, Y., 1973, Stochastic flow in capillary blood vessels, Microvasc. Res. 5:34. Intaglietta, M., and Tompkins, W. R., 1972, On-line microvascular blood cell flow velocity measurement by simplified correlation technique, Microvasc. Res. 4:217.

    Google Scholar 

  • Johnson P. C., and Wayland H., 1967, Regulation of blood flow in single capillaries, Am. J. Physiol. 212:1405.

    PubMed  CAS  Google Scholar 

References

  • Baker M., and Wayland H., 1974, On-line volumetric flow rate and velocity profile measurement for blood in microvessels, Microvasc. Res. 7:131.

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta, M., Pawula, R. F., and Tompkins, W. R., 1970, Pressure measurements in the mammalian microvasculature, Microvasc. Res. 2:212.

    Google Scholar 

  • Tompkins, W. R., Monti, R., and Intaglietta, M., 1974, Velocity measurements by selftracking correlator, Rev. Sci. Instrum. 45:647.

    Google Scholar 

  • Wayland, H., and Johnson, P. C., 1967, Erythrocyte velocity measurement in microvessels by a two-slit photometric method, J. Appl. Physiol. 22:333.

    Google Scholar 

  • Wiederhielm C. A., Woodbury J. W., Kirk S., and Rushmer R. F., 1950, Pulsatile pressures in the microcirculation of the frog’s mesentery, Am. J. Med. 23:684.

    Google Scholar 

References

  • Baker M., and Wayland H., 1974, On-line flow rate and velocity profile measurement for blood in microvessels, Microvasc. Res. 7:131.

    Article  PubMed  CAS  Google Scholar 

  • Wayland, H., and Johnson, P. C., 1967, Erythrocyte velocity measurement in microvessels by a two-slit photometric method, J. Appl. Physiol. 22:333.

    Google Scholar 

References

  • Butti, P., Intaglietta, M., Reimann, H., Holliger, C., Bollinger, A., and Anliker, M., 1975, Capillary red blood cell velocity measurements in human nailfold by videodensitometric method, Microvasc. Res. 10: in press.

    Google Scholar 

  • Holliger, C., Anliker, M., Klingler, D., and Bollinger, A., 1975, Evaluation of an on-line videodensitometric measurement of the red blood cells speed in the capillaries of the human nailfold, Biomed. Tech. 20: in press.

    Google Scholar 

Reference

  • Macagno E. O., and Hung T.-K., 1967, Computational and experimental study of a captive annular eddy, J. Fluid Mech. 28:43.

    Article  Google Scholar 

References

  • Gross G. P., and Hathaway W. E., 1972, Fetal erythrocyte deformability, Pediatr. Res. 6:593.

    PubMed  CAS  Google Scholar 

  • Haberman, S., Blanton, P., and Martin, J., 1967, Some observations on the ABO antigen sites of the erythrocyte membranes of adults and newborn infants, J. Immunol. 98:150.

    Google Scholar 

  • Holroyde, C. P., Oski, F. A., and Gardner, F. H., 1969, The “pocked” erythrocyte, N. Engl. J. Med. 281:516.

    Google Scholar 

  • Jay, A. W. L., 1975, Geometry of the human erythrocyte. I. Effect of albumin on cell geometry, Biophys. J. 15:205.

    Google Scholar 

  • Oski, F. A., and Smith, C., 1968, Red cell metabolism in the premature infant. III. Apparent inappropriate glucose consumption for cell age, Pediatrics 43:473.

    Google Scholar 

  • Sjolin, S., 1954, The resistance of red cells in vitro: A study of the osmotic properties, the mechanical resistance and the storage behaviour of red cells of fetuses, children and adults, Acta Paediatr. 43:1.

    Google Scholar 

  • Whaun, J. M., and Oski, F. A., 1969, Red cell stromal adenosine triophosphatase (ATPase) of newborn infants, Pediatr. Res. 3:105

    Google Scholar 

  • Zipursky A., LaRue T., and Israels L. G., 1960, The in vitro metabolism of erythrocytes from newborn infants, Can. J. Biochem. 38:727.

    Article  PubMed  CAS  Google Scholar 

References

  • Brooks D. E., 1973, The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. II. A model for the effect of adsorbed polymer on the diffuse double layer, J. Colloid Interface Sci. 43:687.

    Article  CAS  Google Scholar 

  • Chien, S., and Jan, K.-M., 1973a, Ultrastructural basis of the mechanism of rouleaux formation, Microvasc. Res. 5:155.

    Google Scholar 

  • Chien, S., and Jan, K.-M., 1973b, Red cell aggregation by macromolecules: Roles of surface adsorption and electrostatic repulsion, J. Supramol. Struct. 1:385.

    Google Scholar 

  • Jan, K.-M., and Chien, S., 1973, Role of surface electric charge in red blood cell interactions, J. Gen. Physiol. 61:638.

    Google Scholar 

  • Overbeek, T. T. G., 1952, Electrochemistry of the double layer, in: Colloid Science, Vol. I (H. R. Kruyt, ed.), pp. 115-193, Elsevier Press, Amsterdam.

    Google Scholar 

  • Seaman, G. V. F., 1975, Electrokinetic behavior of red cells, in: The Red Blood Cell, 2nd ed. (D. M. Surgenor, ed.), pp. 1135-1229, Academic Press, New York.

    Google Scholar 

  • Usami S., and Chien S., 1973, Shear deformation of red cell ghosts, Biorheology 10:425.

    PubMed  CAS  Google Scholar 

References

  • Fitz-Gerald J. M., 1969, Mechanics of red-cell motion through very narrow capillaries, Proc. R. Soc. London Ser. B 174:193.

    Article  CAS  Google Scholar 

  • Katchalsky, A., Kedem, O., Klibansky, C., and De Vries, A., 1960, Rheological considerations of the haemolysing red blood cell, in: Flow Properties of Blood and Other Biological Systems (A. L., Copley and G. Stainsby, eds.), pp. 155-171, Pergamon Press, New York.

    Google Scholar 

  • Lighthill, M. J., 1968, Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes, J. Fluid Mech. 34:113.

    Google Scholar 

  • Lingard, P. S., 1974, Capillary pore rheology of erythrocytes. 1. Hydroelastic behaviour of human erythrocytes, Microvasc. Res. 8:53.

    Google Scholar 

  • Lingard, P. S., 1976, Erythrocyte motion in narrow capillaries-Effect of capillary diameter and haematocrit, Proc. Aust. Physiol. Pharmacol. Soc. (in press).

    Google Scholar 

  • Rand, R. P., 1964, Mechanical properties of the red cell membrane. 11. Viscoelastic breakdown of the membrane, Biaphys. J. 4:303.

    Google Scholar 

References

  • Jay A. W. L., 1973, Viscoelastic properties of the human red blood cell membrane. 1. Deformation, volume loss and rupture of red cells in micropipettes, Biophys. J. 13:1166.

    Article  PubMed  CAS  Google Scholar 

  • Jay, A. W. L., 1975, Geometry of the human erythrocyte. 1. Effect of albumin on cell geometry, Biophys. J. 15:205.

    Google Scholar 

  • Jay, A. W. L., Rowlands, S., and Skibo, L., 1972, The resistance to blood flow in the capillaries, Can. J. Physiol. Pharmacol. 50:1007.

    Google Scholar 

Reference

  • Bond T. P., and Guest M. M., 1971, High speed cinematography of the microcirculation, in: Cinematographic Techniques in Biology and Medicine (A. L. Burton, ed.), pp. 151–172, Academic Press, New York.

    Google Scholar 

References

  • Vaupel P., Hutten H., Wendling P., and Braunbeck W., 1974, Experimental and theoretical investigations on intrasplenic microcirculation in rabbits, Res. Exp. Med. 164:223.

    Article  CAS  Google Scholar 

  • Wagner, H. N., Razzak, M. A., Gaertner, R. A., Caine, W. P., and Feagin, O. T., 1962, Removal of erythrocytes from the circulation, Arch. Intern. Med. 110:128.

    Google Scholar 

  • Zierler, K. L., 1965, Equations for measuring blood flow by external monitoring of radioisotopes, Circ. Res. 16:309.

    Google Scholar 

Reference

  • Bessis, M., and Burte, B., 1964, Tex. Rep. Biol. Med. 23:204 (Suppl. 1).

    Google Scholar 

References

  • Atherton A., and Born G. V. R., 1973, Relationship between the velocity of rolling granulocytes and that of the blood flow in venules, J. Physiol. (London) 233:157.

    CAS  Google Scholar 

  • Clark, E. R., and Clark, E. L., 1935, Observations on changes in blood vascular endothelium in the living animal, Am. J. Anat. 57:385.

    Google Scholar 

  • Grant, L., 1973, The sticking and emigration of white blood cells in inflammation, in: The Inflammatory Process (B. W. Zweifach, L. Grant, and R. T. McCluskey, eds.), pp. 205249, Academic Press, New York.

    Google Scholar 

  • Mayrovitz, H. N., and Wiedeman, M. P., 1975, Changes in leukocyte adhesiveness accompanying laser irradiation, Fed. Proc. 36:385.

    Google Scholar 

  • Schmid-Schoenbein, G. W., Fung, Y. C., and Zweifach, B. W., 1975, Vascular endothelium-leukocyte interaction, Circ. Res. 36:173.

    Google Scholar 

References

  • Frojmovic M. M., 1975, Rheo-optical studies of blood cells, Biorheology 12:193.

    PubMed  CAS  Google Scholar 

  • Frojmovic, M. M., Okagawa, A., and Mason, S. G., 1975, Rheo-optical transients in erythrocyte suspensions, Biochem. Biophys. Res. Commun. 62:17.

    Google Scholar 

  • Goldsmith, H. L., and Marlow, J., 1972, Flow behaviour of erythrocytes. 1. Rotation and deformation in dilute suspensions, Proc. R. Soc. London Ser. B 182:351.

    Google Scholar 

  • Ponder, E., 1930, The measurement of the diameter of erythrocytes. V. The relation of the diameter to the thickness, J. Exp. Physiol. 20:29.

    Google Scholar 

References

  • Copley A. L., 1961, Discussion of a paper by R. Fahraeus, 1961, Rheol. Acta 1:663.

    Article  Google Scholar 

  • Copley, A. L., 1973, On biorheology: Joint plenary lecture, Biorheology 10:87.

    Google Scholar 

  • Copley, A. L., and King, R. G., 1970, Rheogoniometric viscosity measurements of whole human blood at minimal shear rates down to 0.0009 sec−1 Experientia 26:904.

    Google Scholar 

  • Fahraeus, R., 1961, Die intravaskulare Erythrozytenaggregation and ihre Einwirkung auf die Rheologie des Blutes, Rheol. Acta 1:656.

    Google Scholar 

  • Oka, S., 1975, Personal communication, Tokyo.

    Google Scholar 

References

  • Bull B. S., and Brailsford J. D., 1972, The zeta sedimentation ratio, Blood 40:550.

    PubMed  CAS  Google Scholar 

  • Cerny, L. C., and Williams, R., 1975, “A sedimentimeter,” U.S. patent applied for. Davis, H. T., 1960, Introduction to Nonlinear Differential and Integral Equations, U.S. Atomic Energy Commission, Washington, D.C.

    Google Scholar 

References

  • Dacie, J. V., and Lewis, S. M., 1968, Practical Haematology, p. 13, J. and A. Churchill, London.

    Google Scholar 

  • Jay, A. W. L., 1975, Geometry of the human erythrocyte. 1. Effect of albumin on cell geometry, Biophys. J. 15:205.

    Google Scholar 

  • LeFevre, P. G., 1964, The osmotically functional water content of the human erythrocyte, J. Gen. Physiol. 47:485.

    Google Scholar 

  • Rand, R. P., 1964, Mechanical properties of the red cell membrane. 11. Viscoelastic breakdown of the membrane, Biophys. J. 4:303.

    Google Scholar 

  • Seeman, P., Sauks, F., Argent, W., and Kwant, W. O., 1969, The effect of membranestrain rate and of temperature on erythrocyte fragility and critical hemolytic volume, Biochim. Biophys. Acta 183:476.

    Google Scholar 

References

  • Dintenfass L., 1971, Blood Microrheology, Viscosity Factors in Blood Flow, Ischaemia and Thrombosis, Butterworths, London.

    Google Scholar 

  • Dintenfass, L., and Zador, I., 1975, Effect of stress and anxiety on thrombus formation and blood viscosity factors, Bibl. Haematol. 41:133.

    Google Scholar 

  • Zador, I., and Dintenfass, L., 1975, Blood viscosity in chronic anxiety states, First Pacific Congress of Psychiatry, Abst. No. 174 (Melbourne, May 11-17).

    Google Scholar 

References

  • Dintenfass L., 1966, A preliminary outline of the blood high viscosity syndromes, Arch. Intern. Med. 118:427.

    Article  PubMed  CAS  Google Scholar 

  • Dintenfass, L., 1971, Blood’ Microrheology, Viscosity Factors in Blood Flow, Ischaemia and Thrombosis, Butterworths, London.

    Google Scholar 

  • Dintenfass, L., 1975, Malfunction of viscosity-receptors-(viscoreceptors)-as the cause of hypertension, Am. Heart J. (in press).

    Google Scholar 

  • Dintenfass, L., and Ibels, L. S., 1975, Blood viscosity factors and occlusive arterial disease in renal transplant recipients, Nephron 11: in press.

    Google Scholar 

  • Dintenfass, L., and Milton, G. W., 1973, Blood viscosity factors and prognosis in malignant melanoma: Effect of ABO blood groups, Med. J. Aust. 1:1091. Dintenfass, L., and Stewart, J. H., 1971, Formation, viscosity and degradation of artificial thrombi after cadaveric-donor kidney transplantation, Thromb. Diath. Haemorrh. 26:24.

    Google Scholar 

Reference

  • Bond T. P., and Guest M. M., 1971, High speed cinematography of the microcirculation, in: Cinematographic Techniques in Biology and Medicine (A. L. Burton, ed.), pp. 151–172, Academic Press, New York.

    Google Scholar 

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Schmid-Schoenbein, G.W. et al. (1976). Red Cell Interactions with the Microcirculation. In: Grayson, J., Zingg, W. (eds) Microcirculation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4334-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4334-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4336-3

  • Online ISBN: 978-1-4613-4334-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics