The Role of Filter Feeders in Stabilizing Phytoplankton Communities with Some Considerations for Aquaculture



Looking at the hydrosphere globally, there is little doubt that most primary production is carried out by phytoplankton. It follows logically that most of the animals in the sea are fine particle feeders, either directly on the phytoplankton itself or on detrital particles largely derived from plant sources following death and partial decomposition of the primary producer. The fine particle feeders that concern us in planning marine propagation experiments will be primarily of two types: free-swimming planktonic animals and attached benthic forms. While there is considerable diversity of feeding mechanisms among the groups, they too can be broadly classified into two types: cirral feeding mechanisms and ciliary-mucous systems. To be able to predict something about the effects of fine particle feeding on suspensions of phytoplankton, we should first consider how these systems work.


Mytilus Edulis Filter Feeder Skeletonema Costatum Filter Feeding Suspension Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barraclough, W. E., and D. Robinson. 1972. The fertilization of Great Central Lake. II. Effect on juvenile sockeye salmon. Fish. Bull 70: 37–48.Google Scholar
  2. Cannon, H. G. 1928. On the feeding mechanism of the copepods Calanus finmarchicus and Diaptomusgracilis. J. Exp. Biol. 6: 131–144.Google Scholar
  3. Crisp, D. J., and A. J. Southward. 1961. Different types of cirral activity of barnacles. Phil Trans. Roy. Soc. Lond. B. 243: 271–307.CrossRefGoogle Scholar
  4. Dral, A. D. G. 1967. The movements of the latero-frontal cilia and the mechanisms of particle retention in the mussel (Mytilus edulis). Neth. J. Sea Res. 3: 391–422.CrossRefGoogle Scholar
  5. Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805–815.CrossRefGoogle Scholar
  6. Heron, A. C. 1972. Population ecology of a colonizing species: The pelagic tunicate Thalia democratica. I. Individual growth rate and generation time. Oecologia 10: 269–293.CrossRefGoogle Scholar
  7. Holmes, N. (1973). Water transport in the ascidians Styela clava Herdman and Ascidiella aspersa Müller. J, Exp. Mar. Biol. Ecol 11: 1–13.CrossRefGoogle Scholar
  8. Ivlev, V. S. 1945. The biological production of waters. Uspekhi Sovrem. Biol. 19(1): 98–120.Google Scholar
  9. Jørgensen, C. B. 1966. Biology of suspension feeding. Pergamon Press, Oxford.Google Scholar
  10. Knips, F. 1973. Field observations of filter feeding in Mytilus edulis populations in Pet- peswick Inlet, Nova Scotia. Masters dissertation, McGill University, Montreal.Google Scholar
  11. Madin, L. P. 1974. Field observations of the feeding behavior of salps (Tunicata: Thaliacea). Mar. Biol. 25: 143–147.CrossRefGoogle Scholar
  12. Marshall, S. M., and A. P. Orr. 1956. On the biology of Calanus finmarchicus. IX. Feeding and digestion in the young stages. J. Mar. Biol. Ass. U.K. 35: 587–603.CrossRefGoogle Scholar
  13. Monakov, A. V., and Yu. I. Sorokin. 1961. Experimental investigation of Daphnia nutrition using C14.Doklady (Biol. Sciences) 135: 925–926.Google Scholar
  14. Moore, H. J. 1971. The structure of the latero-frontal cirri on the gills of certain lamelli- branch molluscs and their role in suspension feeding. Mar. Biol. 11: 23–27.CrossRefGoogle Scholar
  15. Mullin, M. M. 1963. Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8: 239–250.CrossRefGoogle Scholar
  16. Parsons, T. R., R. J. LeBrasseur, and J. D. Fulton. 1967. Some observation on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton. J. Oceanogr. Soc. Japan 23: 10–17.Google Scholar
  17. Parsons, T. R., R. J. LeBrasseur, J. D. Fulton, and O. D. Kennedy. 1969. Production studies in the Strait of Georgia. Part II. Secondary production under the Fraser River plume, February to May, 1967. J. Exp. Mar. Biol. Ecol. 3: 39–50.CrossRefGoogle Scholar
  18. Pavlova, Ye. V. 1959. On grazing by Penilia avirostris Dana. Tr. Sevast. Biol. Sta. 11: 63–71. (Fish. Res. Bd. Can., Trans. No. 967).Google Scholar
  19. Poulet, S. A. 1973. Grazing of Pseudocalanus minutus on naturally occurring particulate matter. Limnol. Oceanogr. 18: 564–573.CrossRefGoogle Scholar
  20. Poulet, S. A. 1974. Seasonal grazing of Pseudocalanus minutus on particles. Mar. Biol. 25: 109–123.CrossRefGoogle Scholar
  21. Rasmont, R. 1968. Nutrition and digestion. Pages 43–51 in: M. Florkin and B. T. Scheer, eds. Chemical Zoology, 2. Academic Press, New York.Google Scholar
  22. Reeve, M. R. 1963. The filter-feeding of Artemia. I. In pure cultures of plant cells. J. Exp. Biol. 40: 195–205.Google Scholar
  23. Richman, S., and J. N. Rogers. 1969. The feeding of Calanus helgolandicus on synchronously growing populations of the marine diatom Ditylum brightwelli. Limnol. Oceanogr. 14: 701–709.CrossRefGoogle Scholar
  24. Sheldon, R. W., W. H. Sutcliffe, Jr., and A. Prakash. 1973. The production of particles in the surface waters of the ocean with particular reference to the Sargasso Sea. Limnol. Oceanogr. 18: 719–733.CrossRefGoogle Scholar
  25. Strathmann, R. R., T. L. Jahn, and J. R. C. Fonseca. 1972. Suspension feeding by marine invertebrate larvae: Clearance of particles by ciliated bands of a rotifer, pluteus and trochophore. Biol. Bull Mar. Biol Lab., Woods Hole 142: 505–519.CrossRefGoogle Scholar
  26. Taniguchi, A. 1973. Phytoplankton-zooplankton relationships in the western Pacific Ocean and adjacent seas.Mar, Biol 21: 115–121.CrossRefGoogle Scholar
  27. Tenore, K. R., and W. M. Dunstan. 1973. Comparison of feeding and biodeposition of three bivalves at different food levels. Mar. Biol. 21: 190–195.CrossRefGoogle Scholar
  28. Vahl, O. 1972a. Efficiency of particle retention in Mytilus edulis L. Ophelia 10:17–25.Google Scholar
  29. Vahl, O. 1972b. Particle retention and relation between water transport and oxygen uptake in Chlamys opercular is (L.) (Bivalvia). Ophelia 10: 67–74.Google Scholar
  30. Walne, P. R. 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves. J. Mar. Biol Ass. U.K. 52: 345–374.CrossRefGoogle Scholar
  31. Winter, J. E. 1969. Über den Einfluss der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Mar. Biol. 4: 87–135.CrossRefGoogle Scholar
  32. Winter, J. E. 1973. The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus. Mar. Biol 22: 317–328.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  1. 1.Marine Ecology LaboratoryBedford Institute of OceanographyDartmouthCanada

Personalised recommendations