Advertisement

The Technical Production of Microalgae and Its Prospects in Marine Aquaculture

Chapter

Abstract

The commercial utilization of natural vegetations of seaweeds (macroalgae) has an ancient tradition and is today the basis of an important industry (Levring et al., 1969; Chapman, 1970; von Witsch, 1970). By contrast, microalgae have in only a few cases been exploited directly (Clement et al., 1967; Clement and Van Landeghem, 1971; Aldave, 1969), since their dispersed standing crops are usually not accessible to economic harvesting techniques. Therefore, industrial production of microalgae is the logical approach toward making use of this group of minute, often single-celled water plants.

Keywords

Green Alga Technical Production Algal Culture Mass Culture Silver Carp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldave Pajares, A. 1969. Algas azul-verdes utilizadas como alimento en la region alto andina Peruana. Bol. Soc. Bot. Libertad. Trujillo 1 (2): 5–43.Google Scholar
  2. Bardach, J. E. 1968. Aquaculture. Science 161.Google Scholar
  3. Berland, B. R., D. J. Bonin, R. A. Daumas, P. L. Labordeo, and S. Y. Maestrini. 1970. Variations du comportement physiologique de l’algue Monallantus salina (Xanthophycee) en culture. Mar. Biol. 7: 82–92.CrossRefGoogle Scholar
  4. Bock, H.-D., and J. Wunsche. 1967. Möglichkeiten zur Verbesserung der Proteinqualität von Grünalgenmehl. Sitzungsber. Dtsch. Akad. Landw. Wiss. 16(9): 113–119.Google Scholar
  5. Brock, T. D. 1969. Microbial growth under extreme conditions. Symp. Soc. Gen. Microbial. 19: 15–41.Google Scholar
  6. Burlew, J. S. 1953. Algal culture from laboratory to pilot plant. Carnegie Inst. Wash., Publ. No. 600.Google Scholar
  7. Canter, H. M., and J. W. G. Lund. 1968. The importance of Protozoa controlling the abundance of planktonic algae in lakes. Proc. Linn. Soc. London 179: 203–219.CrossRefGoogle Scholar
  8. Chapman, V. J. 1970. Seaweeds and their uses. Methuen & Co., London.Google Scholar
  9. Chet, I., S. Fogel, and R. Mitchell. 1971. Chemical detection of microbial prey by bacterial predators. J. Bact. 106: 863–867.PubMedGoogle Scholar
  10. Clement, G., and H. van Landeghem. 1970. Spirulina, ein günstiges Objekt für die Massenkultur von Mikroalgen. Ber. Dtsch. Bot. Ges. 83: 559–566.Google Scholar
  11. Clement, G., C. Giddey, and R. Menzi. 1967. Amino acid composition and nutritive value of the alga Spirulina maxima. J. Sei. Food Agric. 18: 497–501.PubMedCrossRefGoogle Scholar
  12. Davies, D. R. 1971. Single cell protein and the exploitation of mutant algae lacking cell walls. Nature (London) 233: 143–144.CrossRefGoogle Scholar
  13. Drebes, G. 1968. Lagenisma coscinodisci gen. nov. spec, nov., ein Vertreter der Lageni- diales in der marinen DiatomeeCoscinodiscus. Veröff Inst. Meeresforsch. Bremerhaven 3: 67–70.Google Scholar
  14. Feldheim, W. 1972. Untersuchungen über die Verwendung von Mikroalgen in der menschlichen Ernährung. I. Ernährungsversuch mit algenhaltigen Kostformen in Thailand. Int. Z. Vitamin forsch. 42: 6–10.Google Scholar
  15. Feldheim, W. 1973. Personal communication.Google Scholar
  16. Florenzano, W. Balloni and R. Materassi. 1964. Indagini sulla coltura massiva non sterile delle alghe azotofissatrici. Ann. Microbiol. (Milano) 14: 115–127.Google Scholar
  17. Fogg, G. E. 1962. Extracellular products. Pages 475–489 in: R. A. Lewin, ed. Physiology and biochemistry of algae. Academic Press, New York.Google Scholar
  18. Fott, B. 1967. Phlyctidium scenedesmi. A new chytrid destroying mass cultures of algae. Allg. Mikrobiol. 7: 97–102.Google Scholar
  19. Fredrickson, A. G., and H. M. Tsuchiya. 1970. Utilization of the effect of the intermittent illumination on photosynthetic microorganisms. Pages 519–541 in: Prediction and measurement of photosynthetic productivity. Centre of Agricultural Publ. and Doc., Wageningen.Google Scholar
  20. Golueke, C. G., and W. J. Oswald. 1965. Harvesting and processing of sewage-grown algae. J. Water Pollut. Control Fed. 37: 471–498.Google Scholar
  21. Golueke, C. G., and W. J. Oswald. 1970. Surface properties and ion exchange in algae removal. J. Water Pollut. Control Fed. 42: R304-R314.Google Scholar
  22. Hickling, C. F. 1970. Estuarine fish farming. Pages 119–214 in: F. S. Russell and M. Yonge, eds. Adv. Marine biol., Vol. 8. Academic Press, New York.Google Scholar
  23. Hintz, H. F., and H. Heitmann. 1967. Sewage-grown algae as a protein supplement for swine. Anim. Prod. 9: 135–140.CrossRefGoogle Scholar
  24. Idyll, C. P. 1969. Status of commercial culture of crustaceans. Pages 55–64 in: H. W. Youngken, Jr., ed. Food drugs from the sea: Proc.Symp. Marine Technol.Soc. Washington, D. C.Google Scholar
  25. Kanazawa, A. 1969. On the vitamin B of a diatom, Chaetoceros simplex, as the diet for the larvae of marine animals. Mem. Fac. Fish. Kakoshima Univ. 18: 93–97.Google Scholar
  26. Kofranyi, E., and F. Jekat. 1967. Zur Bestimmung der biologischen Wertigkeit von Nahrungsproteinen. XII. Die Mischung von Ei, Mais, Soja, Algen. Hoppe-Seyler’s Z. Physiol. Chem. 348: 84–88.PubMedCrossRefGoogle Scholar
  27. Kraut, H., and M.-E. Meffert. 1966. Über unsterile Grosskulturen von Scenedesmus obliquus. Forschungsber. des Landes Nordrhein-Westfalen Nr. 1648: 1–61. Westdeutscher Verlag, Köln.Google Scholar
  28. Kraut, H., F. Jekat, and W. Pabst. 1966. Ausnutzungsgrad und biologischer Wert des Proteins der einzelligen Grünalge Scenedesmus obliquus, ermittelt im Ratten-Bilanz-Versuch. Nutr. Dieta 8: 130–144.Google Scholar
  29. Levring, T., H. A. Hoppe, and C. J. Schmid. 1969. Marine algae-a survey of research and utilization. Walter de Gruyter & Co., Hamburg. 421 pp.Google Scholar
  30. Lewin, R. A. 1962. Physiology and biochemistry of algae. Academic Press, New York.Google Scholar
  31. McGarry, M. G. 1970. Algae flocculation with aluminium sulfate and poly electrolytes. J. Water Pollut. Control Fed. 42: 191–201.Google Scholar
  32. McGarry, M. G., and C. Tongkasame. 1971. Water reclamation and algae harvesting. J. Water Pollut. Control Fed. 43: 824–835.Google Scholar
  33. Mironova, N. V. 1969. Comparison of growth of Tilapias (Tilapia mossambica Peters), when fed on Chlorella and other foodstuffs. NASA Techn. Trnasl. TTF 529: 478–484.Google Scholar
  34. Mitsuda, H., K. Yasamoto, and H. Nakumura. 1966. Needs for new protein isolate techniques to utilize Chlorella and other unused resources. Proc. 7th Int. Cong. Nutr. Hamburg 5: 327–332.Google Scholar
  35. Müller-Wecker, H., and E. Kofranyi. 1973. Zur Bestimmung der biologischen Wertigkeit von Nahrungsproteinen. 18. Einzeller als zusätzliche Nahrungsquelle. Hoppe-Seyler’s Z. Physiol. Chem. 354: 1034–1042.PubMedCrossRefGoogle Scholar
  36. Nichiporovich, A. A. 1967. Aims of research and photosynthesis of plants as a factor in productivity. Pages 3–36 in: Q. A. Nichiporovich, ed. Photosynthesis of productive systems. Isr. Progr. Scient. Transl., Jerusalem.Google Scholar
  37. Oswald, W. J., and C. G. Golueke, 1968. Harvesting and processing of waste-grown micro- algae. Pages 371–389 in: D. F. Jackson, ed. Algae, man and the environment. Syracuse University Press, Syracuse.Google Scholar
  38. Othmer, D. F., and O. A. Roels. 1973. Power, freshwater and food from cold, deep sea water. Science (Washington) Nov.Google Scholar
  39. PAG Guideline No. 6. 1971. Guideline for preclinical testing of novel sources of protein. FAO/WHO/UNICEF Protein Advisory Group. United Nations, N. Y.Google Scholar
  40. Panov, D. A., Yu. I. Sorokin, and L. G. Motenkova. 1969. Experimental study of the feeding of bighead and silver carp fry. Vopr. Ikhtiol. 9: 138–152.Google Scholar
  41. Payer, H. D., C. J. Soeder, G. Feldheim, W. Feldheim, U. Gross, and R. Gross. 1973. Dortmunder Algen in Übersee. Umsch. Wiss. Tech. 73 (13): 484–485.Google Scholar
  42. Payer, H. D., K. H. Runkel, H. Kunte, H. Graf, E. Stengel, H. Mohn, and A. Polsiri, 1975. Die Kontamination von Mikroalgen mit einigen umweltbürtigen Schadstoffen. 1. Symposium Mikrobielle Proteingewinnung. Verlag Chemie, Weinheim, 191–200.Google Scholar
  43. Peres, J. M. 1968. Aquaculture marine. Sci. Vie 86: 100–111.Google Scholar
  44. Prokes, B., and J. Zahradnik, 1969. Outdoor cultures: Development of unit operations. Ann. Rep. Lab. Algol Trebon 1969: 172–178.Google Scholar
  45. Rhodes, W. W. 1969. Growth of oyster larvae (Crassostrea virginica) at various sizes in different concentrations of the chrysophyte, Isochrysis galbana. Proc. Nat. Shellfish. Assoc. 60: 10.Google Scholar
  46. Saffermann, R. S., and M. E. Morris. 1967. Observations on the occurrence, distribution, and seasonal incidence of blue-green algal viruses. Appl. Microbiol. 15: 1219–1222.Google Scholar
  47. Sato, T., and M. Serikawa. 1968. Mass culture of a marine diatom, Nitzschia closterium. Bull. Plankton Soc. Jap. 15: 13–16.Google Scholar
  48. Schnepf, E., E. Hegewald, and C. J. Soeder. 1974. Elektronenmikroskopische Beobachtungen an Parasiten aus Scenedesmus-Massenkulturen. 4. Bakterien. Arch. Mikrobiol. 98: 133–145.Google Scholar
  49. Schultz, G. 1963. Über eine zweckmässige Steuerung der Mineralstoffversorgung von Algengrosskulturen im Freiland. Z. Natur forsch. 18b: 946–950.Google Scholar
  50. Shelef, G., M. Schwarz, and H. Schechter. 1972. Prediction of photosynthetic biomass production in accelerated algal-bacterial wastewater treatment systems. 6th Int. Water Poll. Res., Jerusalem. Pergamon Press, New York.Google Scholar
  51. Shilo, M. 1971. Biological agents which cause lysis of blue-green algae. Mitt. Int. Ver. Theor. Angew. Limnol. 19: 206–231.Google Scholar
  52. Slobodskoi, L. I., F. Ya. Sidko, V. I. Belyanin, V. F. Alypov, and G. F. Beresnev. 1969. Analytical expression of the effect of temperature on microalgae productivity. Biofizika 14: 196–199.PubMedGoogle Scholar
  53. Soeder, C. J. 1971. Mikroalgenkultur im technischen Massstab. Biologie in unsere Zeit 133: 142.Google Scholar
  54. Soeder, C. J., E. Hegewald, W. Pabst, H. D. Payer, I. Rolle, and E. Stengel. 1970. Zwanzig Jahre angewandte Mikroalgenforschung in Nordrhein-Westfalen. Jahrb. Landesamt fur Forschung, Nordrh ein - Westfalen, 1–34. Google Scholar
  55. Soeder, C. J., and D. Maiweg. 1969. Einfluss pilzlicher Parasiten auf unsterile Massenkulturen von Scenedesmus. Arch. Hydrobiol. 66: 48–55.Google Scholar
  56. Soeder, C. J., and W. Pabst. 1970. Gesichtspunkte für die Verwendung von Mikroalgen in der Ernährung von Mensch und Tier. Ber. Dtsch. Bot. Ges. 83 (11): 607–625.Google Scholar
  57. Soeder, C. J., G. Schultze, and G. Thiele. 1967. Einfluss verschiedener Kulturbedingungen auf das Wachstum in Synchronkulturen vonChlorella fusca Shihira et Krauss. Arch. Hydrobiol. (Suppl). 23 (Falkau-Arbeiten VI): 127–171.Google Scholar
  58. Soeder, C. J., and E. Stengel. 1974. Action of external factors on growth and metabolism of algae. Pages 714–740 in: W. D. P. Stewart, ed. Algal physiology and biochemistry. Black-well Publ., London.Google Scholar
  59. Soeder, C. J., A. Strotmann, and E. Stengel. 1969. Aufzucht von Karpfen mit Grünalgen als Eiweissquelle.Umsch. Mss. Tech. 11: 342.Google Scholar
  60. Sorgeloos, P. 1973. High density culturing of the brine shrimp, Artemia salina L. Aquaculture 1: 385–391.Google Scholar
  61. Stengel, E. 1970. Die Massenproduktion von Mikroalgen-Kulturverfahren und technische Anlagen. Ber. Dtsch. Bot. Ges. 83(11): 589–606.Google Scholar
  62. Stengel, E., and C. J. Soeder, 1975. Control of photosynthetic production in aquatic ecosystems. Pages 645–660 in: J. F. Cooper (ed.), Photosynthesis and Productivity in Different Environments. Cambridge University Press, Cambridge.Google Scholar
  63. Steemann Nielsen, E., V. K. Hansen, and E. Joergensen. 1964. The adaptation to different light intensities in Chlorella vulgaris and the time dependence or transfer to a new light intensity.Physiol. Plant. 17: 505–517.Google Scholar
  64. Stewart, W. D. P., ed, 1974. Algal physiology and biochemistry. Blackwell Pubi., London.Google Scholar
  65. Strickland, J. D. H., 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd. Canada 122: 1–172.Google Scholar
  66. Takechi, Y. 1971. Chlorella: Its fundamentals and application. Gakken Co., Tokyo.Google Scholar
  67. Tailing, J. F. 1972. Generalized and specialized features of phytoplankton as a form of photosynthetic cover. Proc. of the IBP/UNESCO Symp. 6–12 May. Kazimerz Dolny, Poland.Google Scholar
  68. Tamiya, H. 1957. Mass culture of algae.Ann. Rev. Plant Physiol. 8: 309–334.CrossRefGoogle Scholar
  69. Tamiya, H., E. Hase, K. Shibata, A. Mituya, T. Iwamura, T. Nihei, and T. Sasa. 1953. Kinetics of growth of Chlorella. Pages 204–234 in: J. S. Burlew, ed. Algal culture. Carnegie Inst. Wash. Pubi. No. 600.Google Scholar
  70. Tanaka, Y. 1969. Studies on propagation of a hard clam, Merethrix lamarckii. I. Artificial breeding. Bull. Tokai Reg. Fish. Res. Lab. 58: 163–168.Google Scholar
  71. Vendlova, J. 1969. Outdoor cultivation in Bulgaria. Ann. Rep. Algol. Lab. Trebon 1968: 143–152.Google Scholar
  72. Wagner, K.-H., and I. Siddiqi. 1973. Die toxischen Inhaltsstoffe der Mikroalge Scenedesmus obliquus. Naturwissenschaften 60: 109–110.PubMedCrossRefGoogle Scholar
  73. Westley, R. E. 1971. Observations on oyster shrimp culture in southern Japan. Proc. Nat. Shellfish. Assoc. 61: 14.Google Scholar
  74. Wiedemann, V. E. 1970. Heterotrophic growth of algae. Pages 107–114 in: J. E. Zajic, ed. Properties and products of algae. Plenum Press, New York.Google Scholar
  75. von Witsch, H. 1970. Mikro- und Makroalgen als Nahrungsmittel. Ber. Dtsch. Bot. Ges. 83 (11): 519–526.Google Scholar
  76. von Witsch, H., and P. Heussler. 1970. Erste Beobachtungen über die Eignung von Coelastrum proboscideum Bohlin zur Massenkultur. Ber. Dtsch. Bot. Ges. 83 (11): 579–588.Google Scholar
  77. Zajic, J. E., and Y. S. Chiù. 1970. Heterotrophic growth of algae. Pages 1–47 in: J. E. Zajic, ed. Properties and products of algae. Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  1. 1.Abteilung für Algenforschung und AlgentechnologieGesellschaft für Strahlen-und Umweltforschung mbH, MünchenDortmundGermany

Personalised recommendations