Higher Plants as the Basis for Alternate Food Chains: Their Potentialities in Relation to Mass Culture of Microalgae

  • Eberhard Stengel


Higher aquatic plants have mostly been underestimated with regard to their primary production potential and their importance as the basis of aquatic food chains. This neglect of macrophytes is especially obvious in limnology (Thienemann, 1926), where the research is concentrated almost exclusively on the pelagic vegetation, the phytoplankton. But in marine biology, as well, the investigation of higher plants (angiosperms) has received far less attention than the planktonic algae or the seaweeds. It is only in recent years that a change has come about (Gaevskaya, 1966). From World War II onward a steadily increasing number of publications pointed out that the role of higher plants in primary production in the shallow areas of fresh, brackish, and marine waters can definitely surpass pelagic primary production in such biotopes. Thus the importance of angiosperms for the great productivity of shallow waters has finally been elucidated.


Food Chain Reef Flat Zostera Marina Marine Aquaculture Potamogeton Pectinatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascherson, P., and P. Graebner. 1907. Potamogetonaceae. Pflanzenreich 31: 1–184.Google Scholar
  2. Bauersfeld, P., R. R. Kifer, N. W. Durrant, and J. E. Sykes, 1969. Nutrient content of turtle grass (Thalassia testudinum). Proc. Int. Seaweed Symp. 6: 637–645.Google Scholar
  3. Biebl, R., and C. P. McRoy. 1971. Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Mar. Biol. 8: 48–56.CrossRefGoogle Scholar
  4. Chapman, V. J. 1970. Seaweeds and their uses. Methuen & Co., London.Google Scholar
  5. Den Hartog, C. 1970. The sea-grasses of the world.Verh. d. Koninkl. Nederlandse Akad. van Wetenschappen, Afd. Natuurkunde Tweede Reeks, Deel 59, No. 1 North-Holland Publ. Co., Amsterdam and London.Google Scholar
  6. Frank, P. A. and R. H. Hodgson. 1964. A technique for studying absorption and translocation in submersed plants. Weeds 12, 80–82.CrossRefGoogle Scholar
  7. Gaevskaya, N. S. 1966. The role of higher aquatic plants in the nutrition of the animals of fresh-water basins. Vol. I-III. Nauka, Moscow. Transi, by D. G. Maitland Muller, K. H. Mann, ed. National Lending Library for Science and Technology, Boston Spa, Yorkshire, England, 1969.Google Scholar
  8. Goering, J. J., and P. L. Parker. 1972. Nitrogen fixation by epiphytes on sea grasses. Limnol. Oceanogr. 17(2): 320–322.CrossRefGoogle Scholar
  9. Hegi, G. 1909. 2. Aufl. 1935, K. Suessenguth, ed. Flora von Mitteleuropa, Bd. I, Pteridophyta, Gymnospermae und Monocotyledones I. Hanser, Munich (Reprint 1965).Google Scholar
  10. Hiatt, R. W. 1944. Food chains and the food cycle in Hawaiian fish ponds. Part. I. The food and feeding habits of mullet (Mugil cephalus), milkfish (Chanos chanos) and the ten-pounder (Elops machnata). Trans. Am. Fish Soc. 74(2): 250–261.Google Scholar
  11. Hickling, C. F. 1970. Estuarine fish farming. Sir Frederic Russell and Sir Maurice Yonge, eds. Adv. Mar. Biol. 8, 119–213.CrossRefGoogle Scholar
  12. Kelly, J. A., Jr., C. M. Fuss, Jr., and J. R. Hall. 1971. The transplanting and survival of turtle grass,Thalassia testudinum, in Boca Ciega Bay, Florida. Fish. Bull. U.S. Dep. Commer. 69(2): 273–280.Google Scholar
  13. Kirchner, O., E. Loew, and C. Schröter. 1908. Lebensgeschichte der Blütenpflanzen Mitteleuropas, I. Band, 1. Abteilung. Allgemeines, Gymnospermae, Typhaceae, Sparganiceae, Potamogetonaceae, Najadaceae, Juncaginaceae, Alismaceae, Butomaceae, Hydrocharitaceae. Verlagsbuchhandlung Ulmer, Stuttgart.Google Scholar
  14. McRoy, C. P., and R. J. Barsdate. 1970. Phosphate absorption in eelgrass. Limnol. Oceanogr. 15: 6–13.Google Scholar
  15. McRoy, C. P., R. J. Barsdate, and M. Nebert. 1972. Phosphorus cycling in an eelgrass (Zos- tera marina L.) ecosystem. Limnol. Oceanogr. 17: 58–67.CrossRefGoogle Scholar
  16. Odum, W. E. 1970. Utilization of the direct grazing and plant detritus food chains by the stripped mullet Mugil cephalus. In: J. H. Steele, ed. Marine food chains, University of California Press, Berkeley and Los Angeles.Google Scholar
  17. Patriquin, D. G. 1972. The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15, 35–46.CrossRefGoogle Scholar
  18. Patriquin, D., and R. Knowles. 1972. Nitrogen fixation in the rhizophere of marine angiosperms. Mar. Biol. 16,49–58.CrossRefGoogle Scholar
  19. Payer, H. D., C. J. Soeder, G. Feldheim, W. Feldheim, U. Gross, and R. Gross. 1973. Dortmunder Algen in Übersee. Umschau Wiss. Tech. 73(13): 404–405.Google Scholar
  20. Quasim, S. Z. 1970. Some problems related to the food chain in a tropical estuary. In: J. H. Steele, ed. Marine food chains. University of California Press, Berkeley and Los Angeles.Google Scholar
  21. Renn, C. E. 1936. The wasting disease of Zostera marina. Biol. Bull. 70: 148–158.CrossRefGoogle Scholar
  22. Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.Google Scholar
  23. Seidel, K. 1966. Reinigung von Gewässern durch höhere Pflanzen. Naturwissenschaften 53: 289–297.PubMedCrossRefGoogle Scholar
  24. Seidel, K., F. Scheffer, R. Kickuth, and E. Schlimme. 1967. Mixotrophie bei Scirpus Lacustris L. 54. Jg., Heft 7.Google Scholar
  25. Stengel, E. 1970. Anlagentypen und Verfahren der technischen Algenmassenproduktion. Ber. Dtsch. Bot. Ges. 83(11): 589–606.Google Scholar
  26. Stengel, E. and C. J. Soeder. 1975. Control of photosynthetic production in aquatic ecosystems. In: J. P. Cooper, ed. Photosynthesis and productivity in different environments. Cambridge University Press. (Proc. IBP Meeting held in Aberystwyth, April 1973).Google Scholar
  27. Stewart, W. D. P. 1966. Nitrogen fixation in plants. Athlone Press, London.Google Scholar
  28. Thienemann, A. 1926. Der Nahrungskreislauf im Wasser. Zool Anz. 2 Suppl.Google Scholar
  29. Westlake, D. F. 1965. Some basic data for investigations of the productivity of aquatic macrophytes. Proc. of the I.B.P. Symposium on Primary Productivity in Aquatic Environments Pallanza, Italy, April 1965. Mem. 1st. Ital. Idrobiol. 18 Suppl.: 229–248.Google Scholar
  30. Wetzel, R. G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Int. Revue Gesyamten Hydrobiol. Hydrogr. 49, 1–61.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Eberhard Stengel
    • 1
  1. 1.Abteilung für Algenforschung und AlgentechnologieGesellschaft für Strahlen-und Umweltforschung mbH, MünchenDortmundGermany

Personalised recommendations