Heated Effluent for the Rearing of Fry—for Farming and for Release



The objective in aquaculture, as in traditional animal husbandry, is to produce a high-quality product in the shortest possible time and at minimum expense. One of the main constraints in achieving rapid growth of poikilotherms is maintenance of suitable temperature for feeding and growth. In Fry’s (1947) classification of the environment, temperature is a controlling factor; it governs the metabolic rate, thus affecting feeding appetite, digestion, and growth rate.


Atlantic Salmon Brown Trout Sockeye Salmon Pacific Salmon Steelhead Trout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B. L., W. S. Zaugg, and L. R. McLain. 1973. Temperature effect on parr-smolt transformation in steelhead trout (Salmo gairdneri) as measured by gill sodium-potassium stimulated adenosinetriphosphatase. Comp. Biochem. Physiol. 44A: 1333–1339.CrossRefGoogle Scholar
  2. Allen, K. R. 1941. Studies on the biology of the early stages of the salmon (Salmo salar). III. Growth in the Thurso River system, Caithness. J. Anim. Ecol. 10: 273–295.CrossRefGoogle Scholar
  3. Allen, K. R., R. L. Saunders, and P. F. Elson. 1972. Marine growth of Atlantic salmon (Salmo salar) in the Northwest Atlantic. J. Fish. Res. Board Can. 29: 1373–1380.CrossRefGoogle Scholar
  4. Anonymous. 1968. Irish Coastal Pilot, 11th ed. N. P. No. 40. Pub. by Hydrographer of the Navy, London.Google Scholar
  5. Atherton, W. D., and A. Aitken. 1970. Growth, nitrogen metabolism and fat metabolism in Salmo gairdneri Rich. Comp. Biochem. Physiol. 36: 719–747.CrossRefGoogle Scholar
  6. Baggerman, B. 1960a. Salinity preference, thyroid activity and seaward migration of four species of Pacific salmon (Oncorhynchus). J. Fish. Res. Board Can. 17: 295–322.CrossRefGoogle Scholar
  7. Baggerman, B. 1960b. Factors in the diadromous migration of fish. Symp. Zool. Soc. London 1: 33–60.Google Scholar
  8. Belding, D. L., M. J. Pender, and J. A. Rodd. 1932. The early growth of salmon parr in Canadian hatcheries. Trans. Am. Fish. Soc. 62: 211–223.CrossRefGoogle Scholar
  9. Bergström, E. 1973. The role of nutrition in growth and survival of young hatchery reared Atlantic salmon. In: M. W. Smith and W. M. Carter, eds. Int. Atl. Salmon Symp. The Int. Atl. Salmon Found., Spec. Publ. 4(1): 265–282.Google Scholar
  10. Brett, J. R. 1970a. Temperature. Pages 513–560 in: O. Kinne, ed. Marine Ecology, Vol. I. Environmental Factors. Pt. 1.Google Scholar
  11. Brett, J. R. 1970b. Fish-The energy cost of living. Pages 37–52 in: W. J. McNeil, ed. Marine Aquaculture. Oregon State University Press, Corvallis.Google Scholar
  12. Brett, J. R. 1971a. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11: 99–113.Google Scholar
  13. Brett, J. R. 1971b. Growth responses of young sockeye salmon (Oncorhynchus nerka) to different diets and planes of nutrition. J. Fish. Res. Board Can. 28: 1635–1643.CrossRefGoogle Scholar
  14. Brett, J. R. 1973. Marine aquaculture in Canada-The practice and the promise, p. 150–196. Govt.-Industry Policy Development Seminar, Freshwater Institute, Winnipeg, Manitoba. May 31-June 1, 1973.Google Scholar
  15. Brett, J. R., J. E. Shelbourn, and C. T. Shoop. 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Board Can. 26: 2363–2394.CrossRefGoogle Scholar
  16. Brown, M. E. 1946. The growth of brown trout (Salmo trutta L.). II. The growth of two year old trout at a constant temperature of 11.5°C. J. Exp. Biol. 22: 130–144.PubMedGoogle Scholar
  17. Byrne, J. M., F. W. H. Beamish, and R. L. Saunders. 1972. Influence of salinity, temperature, and exercise on plasma osmolality and ionic concentration in Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 29: 1217–1220.CrossRefGoogle Scholar
  18. Canagaratnam, P. 1959. Growth of fishes in different salinities. J. Fish. Res. Board Can. 16: 121–130.CrossRefGoogle Scholar
  19. Conte, F. P., and H. H. Wagner. 1965. Development of osmotic and ionic regulation in juvenile steelhead trout Salmo gairdneri. Comp. Biochem. Physiol. 14: 603–620.CrossRefGoogle Scholar
  20. Conte, F. P., H. H. Wagner, J. Fessler, and G. Gnose. 1966. Development of osmotic and ionic regulation in juvenile coho salmon Oncorhynchus kisutch. Comp. Biochem. Physiol 18: 1–15.CrossRefGoogle Scholar
  21. Cooper, J. C., and A. D. Hasler. 1974. Electroencephalographic evidence for retention of olfactory cues in homing coho salmon. Science 183: 336–338.PubMedCrossRefGoogle Scholar
  22. Doudoroff, P. 1969. Developing thermal requirements for freshwater fishes: Discussion. In: P. A. Krenkel, and F. L. Parker, eds. Biological Aspects of thermal pollution. Vanderbilt University Press, Nashville, Tenn.Google Scholar
  23. Eales, J. G. 1963. A comparative study of thyroid function in migrant juvenile salmon. Can. J. Zool 41: 811–824.CrossRefGoogle Scholar
  24. Eales, J. G. 1965. Factors influencing seasonal changes in thyroid activity in juvenile steelhead trout, Salmo gairdneri. Can. J. Zool 43: 719–729.CrossRefGoogle Scholar
  25. Eisler, R. 1957. The influence of light on the early growth of chinook salmon. Growth 21: 197–203.PubMedGoogle Scholar
  26. Epstein, F. H., I. A. Katz, and G. B. Pickford. 1967. Sodium- and potassium-activated adenosine triphosphatase of gills: Role in adaptation of teleosts to salt water. Science 156: 1245–1247.PubMedCrossRefGoogle Scholar
  27. Fry, F. E. J. 1947. Effects of the environment on animal activity. Univ. Toronto Stud. Biol. Ser. 55: 1–62.Google Scholar
  28. Gaucher, T. A. 1970. A technological perspective. In: T. A. Gaucher, ed. Aquaculture: A New England perspective. The Res. Inst, of the Gulf of Maine. Proc. from a conference on aquaculture in northern New England.Google Scholar
  29. Gray, J. 1929. The growth of fish. III. The effect of temperature on the development of the eggs of. Salmo fario.J. Exp. Biol. 5: 125–130.Google Scholar
  30. Gross, W. L., E. W. Roelofs, and P. O. Fromm. 1965. Influence of photoperiod on growth of green sunfish,Lepomis cyanellus.J. Fish. Res. Board Can. 22: 1379–1386.CrossRefGoogle Scholar
  31. Gudjonsson, T. 1973. Smolt tagging techniques, stocking, and tagged adult salmon recaptures in Iceland. In: M. W. Smith and W. M. Carter, eds. Int. Atl. Salmon Symp. The Int. Atl. Salmon Found., Spec. Publ. 4 (1): 227–235.Google Scholar
  32. Hayes, F. R., D. Pelluet, and E. Gorham. 1953. Some effects of temperature on the embryonic development of the salmon (Salmo salar). Can. J. Zool. 31: 42–51.CrossRefGoogle Scholar
  33. Hoar, W. S. 1965. The endocrine system as a chemical link between the organism and its environment. Trans. Roy. Soc. Can. Ser. IV, Vol. III, Sect. 3: 175–200.Google Scholar
  34. Hughes, J. T., J. J. Sullivan, and R. Shleser. 1972. Enhancement of lobster growth. Science. 111: 1110–1111.CrossRefGoogle Scholar
  35. Hurley, D. A., and W. L. Woodall. 1968. Responses of young pink salmon to vertical temperature and salinity gradients. Int. Pac. Sal. Fish. Comm., Prog. Rep. No. 19.Google Scholar
  36. Johnston, C. E., and J. G. Eales. 1968. Influence of body size on silvering of Atlantic salmon (Salmo salar) at parr-smolt transformation. J. Fish. Res. Board Can. 27: 983- 987.CrossRefGoogle Scholar
  37. Kamiya, M., and S. Utida. 1969. Sodium-potassium-activated adenosine triphosphatase activity in gills of fresh-water, marine and euryhaline teleosts. Comp. Biochem. Physiol. 31: 671–674.PubMedCrossRefGoogle Scholar
  38. LaRoche, G. 1950. Résistance des saumoneaux á l’eau salée. Ann. l’Acfas 11: 125–128.Google Scholar
  39. Lee, D. J., and R. O. Sinnhuber. 1972. Lipid requirements. Pages 145–180 in: J. E. Halver, ed. Fish Nutrition. Academic Press, New York.Google Scholar
  40. Leggett, W. C., and G. Power. 1969. Differences between two populations of landlocked Atlantic salmon (Salmo salar) in Newfoundland. J. Fish. Res. Board Can. 26: 1585- 1596.CrossRefGoogle Scholar
  41. Marcus, H. C. 1962. Hatchery reared Atlantic salmon smolts in ten months.Prog. Fish. Cult. 24: 127.CrossRefGoogle Scholar
  42. Matthiasson, M. 1970. Beneficial uses of heat in Iceland. Pages 139–184in: Proc. Conf. on Benefic. Uses of Thermal Discharges. N. Y. State Dept. Inviron. Cons., Albany.Google Scholar
  43. McCauley, R. W., and F. Trimborn. 1968. Incubating rainbow trout eggs in heated, recirculated water. Prog. Fish Cult. 30: 64.CrossRefGoogle Scholar
  44. Mclnerney, J. E. 1964. Salinity preference: An orientation mechanism in salmon migration. J. Fish. Res. Board Can. 21: 995–1018.CrossRefGoogle Scholar
  45. Møller, D. 1973. Norwegian salmon farming. In: M. W. Smith and W. M. Carter, eds.Int. Atl. Salmon Symp. The Int. Atl. Salmon Found., Spec. Publ. 4 (1): 259–263.Google Scholar
  46. Paloheimo, J. E. and L. M. Dickie. 1966. Food and growth of fishes. III. Relations among food, body size, and growth efficiency.J. Fish. Res. Board Can. 23: 1209–1248.CrossRefGoogle Scholar
  47. Peters, D. S., and M. T. Boyd. 1972. The effect of temperature, salinity, and availability of food on the feeding and growth of the hogchoker, Trinectes maculatus (Bloch and Schneider). J. Exp. Mar. Biol. Ecol 9: 201–207.CrossRefGoogle Scholar
  48. Peterson, H. H., O. T. Carlson, and S. Jonasson. 1972. The rearing of Atlantic salmon. Copyright Astra-Ewos AB, Sodertälje, Sweden. Bröd Ljungberg Tryckeri AB, Sodertälje, Sweden. 39 p.Google Scholar
  49. Phillips, A. M., Jr., D. L. Livingston, and H. A. Poston. 1966. The effect of changes in protein quality, calorie sources, and calorie levels upon the growth and chemical composition of brook trout. Cortland Hatchery Rep. No. 34 for 1965. Fish. Res. Bull. No. 29.Google Scholar
  50. Phillips, A. M., Jr., H. A. Poston, and D. L. Livingston. 1967. The effect of calorie sources and water temperature upon brook trout growth and body chemistry. Cortland Hatchery Rep. No. 35 for 1966.Fish. Res. Bull. No. 30.Google Scholar
  51. Poston, H. A., D. L. Livingston, and A. M. Phillips, Jr. 1969. The effect of source of dietary fat, calorie ratio, and water temperature on growth and chemical composition of brown trout. Cortland Hatchery Rep. No. 37 for 1968. Fish. Res. Bull. No. 32.Google Scholar
  52. Saunders, R. L. 1973. Salmonid aquaculture in Norway. The Atlantic Salmon Journal, 1973, No. 1: 8–13.Google Scholar
  53. Saunders, R. L., and E. B. Henderson. 1969a. Survival and growth of Atlantic salmon fry in relation to salinity and diet. Fish. Res. Board Can. Tech. Rep. No. 148.Google Scholar
  54. Saunders, R. L., and E. B. Henderson. 1969b. Growth of Atlantic salmon smolts and post-smolts in relation to salinity, temperature and diet. Fish. Res. Board Can. Tech. Rep. No. 149.Google Scholar
  55. Saunders, R. L., and E. B. Henderson. 1969c. Survival and growth of Atlantic salmon parr in relation to salinity. Fish. Res. Board Can. Tech. Rep. No. 147.Google Scholar
  56. Saunders, R. L., and E. B. Henderson. 1970. Influence of photoperiod on smolt development and growth of Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 27: 1295–1311.CrossRefGoogle Scholar
  57. Siginevich, G. P. 1967. Nature of the relationship between increase in size of Baltic salmon fry and water temperature. Gidrobiol. Zhurn. 3: 43–48. Fish. Res. Board Can. Translation Series No. 952.Google Scholar
  58. Stickney, R. R. 1972. Effects of dietary lipids and lipid-temperature interactions on growth, food conversion, percentage lipid and fatty acid composition of channel catfish. Doctoral thesis. Florida State University, Tallahassee (1971) Dissertation Abs. Int. 32, 6545B.Google Scholar
  59. Swift, D. R., and G. E. Pickford. 1965. Seasonal variations in the hormone content of the pituitary gland of the perch, Perca fluviatilis L. Gen. Comp. Endocrinol. 5: 354–365.CrossRefGoogle Scholar
  60. Wagner, H. H. 1970. The parr-smolt metamorphosis in steelhead trout as affected by photo- period and temperature. Doctoral thesis. Oregon State University. 177 p.Google Scholar
  61. Went, A. E. J. 1971. Salmon of the Foyle system (1970). Foyle River Comm., Nineteenth Ann. Rep. 41–51.Google Scholar
  62. Withey, K. G., and R. L. Saunders. 1973. Effects of a reciprocal photoperiod regime on standard rate of oxygen consumption of post-smolt Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 30: 1898–1900.CrossRefGoogle Scholar
  63. Zaugg, W. S., and L. R. McLain. 1970. Adenosinetriphosphatase activity in gills of salmonids: Seasonal variations and salt water influence in coho salmon Oncorhynchus kisutch. Comp. Biochem. Physiol. 35: 587–596.CrossRefGoogle Scholar
  64. Zaugg, W. S., and L. R. McLain. 1971. Gill sampling as a method of following biochemical changes: ATPase activities altered by oubain injection and salt water adaption.Comp. Biochem. Physiol. 38B: 501–506.Google Scholar
  65. Zaugg, W. S., and L. R. McLain. 1972. Changes in gill adenosinetriphosphatase activity associated with parr-smolt transformation in steelhead trout, coho, and spring chinook salmon.J. Fish. Res. Board Can. 29: 167–171.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  1. 1.Aquaculture Group, Department of the Environment, Biological StationFisheries and Marine ServiceSt. AndrewsCanada
  2. 2.North American Salmon Research CenterSt. AndrewsCanada

Personalised recommendations