Cyclic AMP and Myoblast Differentiation

  • Rosalind J. Zalin

Abstract

Cell differentiation in the embryo occurs in at least two distinct stages. The first involves a gradual loss in omnipotence of the cells which become ‘covertly’ committed to a particular developmental path. The second is an expression of this newly acquired commitment, a process involving changes in cell morphology and the appearance of specialised cell products characteristic of the particular cell type. Examination of this second stage in differentiation of cells cultured in vitro has revealed that the extent of expression of the differentiated state depends upon a number of external factors. Manipulation of culture conditions for example can often push cells toward differentiation or to continual proliferation (1) and if initially kept under culture conditions which promote proliferation, cells can often still be made to differentiate when placed in more appropriate culture conditions (2,3). Thus it seems that cells can retain the ‘knowledge’ of their commitment to a particular cell type, the expression of the differentiated state involving a complex interaction between the undifferentiated but committed cells and their environment. It is the nature of this interaction in primary cultures of differentiating chick skeletal muscle cells which is the general concern of the work presented here.

Keywords

Hydrolysis Polysaccharide Adenosine Sulphated Acid Half Life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coon, H.C. and Cahn, R.D. (1966) Science, 153, 1116PubMedCrossRefGoogle Scholar
  2. 2.
    Yaffe, D. (1969) Curr.Top.Devel.Biol. 4, 37CrossRefGoogle Scholar
  3. 3.
    Yaffe, D. (1971) Exptl. Cell Res. 66, 33.PubMedCrossRefGoogle Scholar
  4. 4.
    Hauschka, S.D. (1968) In ‘The Stability of the Differentiated State’ H.Ursprung, ed. ( Berlin: Springer-Verlag ), p. 37Google Scholar
  5. 5.
    Konigsberg, I.R. (1971) Dev.Biol. 26, 133PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson, G.S., Friedman, R.M. and Pastan, I. (1971) Proc.Natl. Acad.Sci. USA 63, 425CrossRefGoogle Scholar
  7. 7.
    Furmanski, P., Silverman, D.J. and Lubin, M. (1971) Nature 233, 413.PubMedCrossRefGoogle Scholar
  8. 8.
    Otten, J., Johnson, G.S. and Pastan, I. (1971) Biochem.Biophys. Res.Communs. 53, 982Google Scholar
  9. 9.
    Prasad, K.M. and Hsie, A.W. (1971) Nature New Biol. 233, 141PubMedGoogle Scholar
  10. 10.
    Hsie, A.W., Jones, C. and Puck, T.T. (1971) Proc.Natl.Acad.Sci. 68, 1648PubMedCrossRefGoogle Scholar
  11. 11.
    Goggins, J.F., Johnson, G.S. and Pastan, I. (1972) J.Biol. Chem. 247, 5759PubMedGoogle Scholar
  12. 12.
    Zalin, R.J. (1973) Exptl. Cell Res. 78, 152.PubMedCrossRefGoogle Scholar
  13. 13.
    Wahrmann, J.P., Luzzati, D. and Winand, R. (1973) Nature New Biol. 245, 112PubMedGoogle Scholar
  14. 14.
    Shainberg, A., Yagil, G. and Yaffe, D. (1971) Dev.Biol. 25, 1PubMedCrossRefGoogle Scholar
  15. 15.
    Brown, B.E., Albano, J.D., Ekins, R.P. and Sgherzi, A.M. (1971) Biochem.J. 121, 561.PubMedGoogle Scholar
  16. 16.
    Zalin, R.J. and Montague, W. (1974) Cell 2, 103PubMedCrossRefGoogle Scholar
  17. 17.
    Beavo, J.A., Hardman, J.G. and Sutherland, E.W. (1970) J.Biol. Chem. 245, 5649PubMedGoogle Scholar
  18. 18.
    Brooker, G., Thomas, L.J. and Applaman, M.M. (1968) Biochemistry 7, 4177PubMedCrossRefGoogle Scholar
  19. 19.
    Daniel, V., Bourne, H.R. and Tomkins, G.M. (1973) Nature New Biol. 244, 167PubMedCrossRefGoogle Scholar
  20. 20.
    Tomasi, V., Rethy, A. and Trevisani, A. (1973) In “The Role of Cyclic Nucleotides in Carcinogenesis”. Shultz and Gratzner eds. ( Acad. Press ) p. 127Google Scholar
  21. 21.
    Birnbaumer, L. (1973) Biochim.Biophys.Acta 300, 129PubMedGoogle Scholar
  22. 22.
    Franklin, T.J. and Foster, S.J. (1974) Nature New Biol. 246, 119.Google Scholar
  23. 23.
    Christoffersen, T., Mørfrland, J., Osnes, J.B. and Øye, I. (1973) Biochim.Biophys.Acta 313, 338PubMedGoogle Scholar
  24. 24.
    Broadus, A.E., Northcutt, R.C., Hardman, J.G., Kaminsky, N.I., Sutherland, E.W. and Liddle, G.W. (1969) Clin.Res. 17, 65Google Scholar
  25. 25.
    Broadus, A.E., Kaminsky, N.I., Northcutt, R.C., Hardman, J.G., Sutherland, E.W. and Liddle, G.W. (1970) J.Clin.Invest. 49., 2237CrossRefGoogle Scholar
  26. 26.
    Franklin, T.J. and Foster, S.J. (1974) Nature New Biol. 246, 146Google Scholar
  27. 27.
    Zalin, R.J. and Montague, W. (accepted for publication in Exptl. Cell Res.)Google Scholar
  28. 28.
    Bischoff, R. and Holtzer, H, (1970) J.Cell Biol. 44, 134PubMedCrossRefGoogle Scholar
  29. 29.
    Novák, E., Drummond, G.I., Skála, J. and Hahn, P. (1972) Arch. Biochem. Biophys. 150, 511PubMedCrossRefGoogle Scholar
  30. 30.
    Sapag-Hagar, M. and Greenbaum, A.L. (1973) Biochem. Biophys. Res.Commun. 53, 982PubMedCrossRefGoogle Scholar
  31. 31.
    Ho, R.J. and Sutherland, E.W. (1971) J.Biol.Chem. 246, 6822PubMedGoogle Scholar
  32. 32.
    Robison, G.A., Butcher, R.W., Oye, I., Morgan, H.W. and Sutherland, E.W. (1965) Molec. Pharmac. 1, 168Google Scholar
  33. 33.
    Kuo, J.F. and De Renzo, E.C. (1969) J.Biol.Chem. 244, 2252PubMedGoogle Scholar
  34. 34.
    Abell, C.W. and Monahan, T.M. (1973) J.Cell Biol. 59, 549PubMedCrossRefGoogle Scholar
  35. 35.
    Burger, M.M., Bombik, B.M., Breckenridge, B.McL. and Sheppard, J.R. (1972) Nature New Biol, 239, 161PubMedCrossRefGoogle Scholar
  36. 36.
    Millis, A.J.T., Forrest, G.A. and Pious, D.A. (1974) Exptl. Cell Res. 83, 335PubMedCrossRefGoogle Scholar
  37. 37.
    Holtzer, H. (1972) In “Cell Differentiation” Harris, Allin and Viza, ed. ( Munksgaard ), p. 33Google Scholar
  38. 38.
    Bischoff R. and Holtzer, H. (1969) J.Cell Biol, 41, 188PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Rosalind J. Zalin
    • 1
  1. 1.School of Biological SciencesUniversity of SussexSussexEngland

Personalised recommendations