Skip to main content

The Localization of Glutamate Decarboxylase, Choline Acetyltransferase, and Aromatic Amino Acid Decarboxylase in Mammalian and Invertebrate Nervous Tissue

  • Chapter
Metabolic Compartmentation and Neurotransmission

Abstract

A chemical transmitter is specifically released from the presynaptic element during stimulation. The transmitter must therefore be supplied to the presynaptic terminal in order to maintain the release at a sufficient rate. This can be achieved either by synthesizing the substance in the presynaptic compartment, by an efficient and rapid uptake of the transmitter into the presynaptic terminal, or both. When the synthesis of a chemical transmitter depends on a specific enzyme, then the localization of the enzyme is probably a better marker for that nerve terminal than the transmitter itself, which may be redistributed by uptake or diffusion into neighboring structures (Fonnum, 1912a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, R. W., and Brady, R. O., 1959, The distribution of glutamate decarboxylase in the nervous system of the rehsus monkey, J. Biol. Chem. 234: 926–928.

    Google Scholar 

  • Andén, N.-E., Carlsson, A., Dahlstrom, A., Fuxe, K., Hillarp, N. A., and Larsson, K., 1964, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3: 523–530.

    Google Scholar 

  • Andén, N.-E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol Scand. 67: 313–326.

    Google Scholar 

  • Andersen, P., Eccles, J. C., and Løyning, Y., 1964, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27: 608–619.

    Google Scholar 

  • Andersen, P., Blackstad, T. W., an Lømo, T., 1966a, Location and identification of excitatory synapses on hippocampal pyramidal cells, Exp. Brain Res. 1: 236–248.

    Google Scholar 

  • Andersen, P., Holmqvist, B., and Voorhoeve, P. E., 1966b, Entorhinal activation of dentate granule cells, Acta Physiol Scand. 66: 448–460.

    Google Scholar 

  • Balázs, R., Machiyama, Y., and Patel, A. J., 1972, Compartmentation and the metabolism of γ-aminobutyrate, in “Metabolic Compartmentation in the Brain” (R. Balázs and I. E. Cremer, eds.), pp. 167–186, Macmillan, London.

    Google Scholar 

  • Barker, D. L., Herbert, E., Hildebrand, J. G., and Kravitz, E. A., 1972, Acetylcholine and lobster sensory neurons, J. Physiol (London) 226: 205–229.

    Google Scholar 

  • Baxter, C., 1970, The nature of γ-aminobutyric acid, in “Handbook of Neurochemistry,” Vol. 3 (A. Lajtha, ed.), pp. 289–353, Plenum Press, New York.

    Google Scholar 

  • Bedard, P., Larochelle, L., Parent, A., and Poirier, L., 1969, The nigro-striatal pathway: A correlative study based on neuroanatomical and neurochemical criteria in the cat, Exp. Neurol. 25: 365–377.

    Google Scholar 

  • Blackstad, T. W., 1967, Cortical gray matter. A correlation of light and electron microscopic data, in “The Neuron” (H. Hydén, ed.), pp. 49–118, Elsevier, Amsterdam.

    Google Scholar 

  • Blackstad, T. W., and Flood, P. R., 1963, Ultrastructure of hippocampal axo-somatic synapses, Nature (London) 198: 542–543.

    Google Scholar 

  • Briel, G., Neuhoff, V., and Osborne, N. N., 1971, Determination of amino acids in single identifiable nerve cells of Helix pomatia, Int. J. Neurosci. 2: 129–136.

    Google Scholar 

  • Broch, O. J., Jr., and Fonnum, F., 1972, The regional and subcellular distribution of catechol-O-methyl transferase in the rat brain, J. Neurochem. 19: 2049–2055.

    Google Scholar 

  • Bull, G. G., Hebb, C., and Ratkovig, D., 1970, Choline acetyltransferase activity of human brain tissue during developement and at maturity, J. Neurochem. 17: 1505–1516.

    Google Scholar 

  • Bullock, T. H., and Horridge, G. A., 1965, “Structure and Function in the Nervous Tissue of Invertebrates,” San Francisco, Calif.

    Google Scholar 

  • Burrows, M., and Hoyle, G., 1973, Neural mechanism underlying behavior in the locust Schistocerca gregaria. III. Topography of limb motorneurons in the metathoracic ganglion, J. Neurobiol. 4: 167–186.

    Google Scholar 

  • Butcher, S. G., and Butcher, L. L., 1974, Origin and modulation of acetylcholine activity on the neostriatum, Brain Res. 71: 167–171.

    Google Scholar 

  • Christenson, J. G., Dairman, W., and Udenfriend, S., 1972, On the identity of dopa decarboxylase and 5-hydroxytryptophan decarboxylase, Proc. Natl Acad. Sci. U.S.A. 69: 343–347.

    Google Scholar 

  • Cotman, C. W., Matthews, D. A., Taylor, D., and Lynch, G., 1973, Synaptic rearrangment in the dentate gyrus: Histochemical evidence of adjustments after lesions in immature and adult rats, Proc. Natl Acad. Sci. U.S.A. 70: 3473–3477.

    Google Scholar 

  • Cottrell, G. A., and Macon, J. B., 1974, Synaptic connections of two symmetrically placed giant serotonin-containing neurones, J. Physiol (London) 236: 435–465.

    Google Scholar 

  • Cottrell, G. A., and Osborne, N. N., 1970, Subcellular localization of serotonin in an identified serotonin-containing neurone, Nature (London) 225: 470–472.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Felix, D., 1970, GABA and inhibition of Deiters’ neurones, Brain Res. 23: 117–120.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57–73.

    Google Scholar 

  • Emson, P. C., and Fonnum, F., 1974, Choline acetyltransferase, actylcholinesterase and aromatic-L- amino acid decarboxylase in single identidied nerve cell bodies from snail Helix aspersa, J. Neurochem. 22: 1079–1088.

    Google Scholar 

  • Emson, P. C., Burrows, M., and Fonnum, F., 1974, Levels of glutamate decarboxylase, choline acetyltransferase and acetylcholinesterase in identified motorneurons of the locust, J. Neurobiol 5: 33–42.

    Google Scholar 

  • Fahn, S., and Cote, L. J., 1968, Regional distribution of gamma aminobutyric acid (GABA) in brains of the Rhesus monkey, J. Neurochem. 15: 209–213.

    Google Scholar 

  • Falck, B., 1962, Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta. Physiol Scand. 56: suppl. 197, 1–26.

    Google Scholar 

  • Flock, A., and Lam, D. M. L., 1974, Neurotransmitter synthesis in inner ear and lateral sense organs, Nature (London) 249: 142–144.

    Google Scholar 

  • Florey, E., 1973, Acetylcholine as a sensory transmitter in crustacea, J. Comp. Physiol 83: 1–16.

    Google Scholar 

  • Fonnum, F., 1968, The distribution of glutamate decarboxylase and aspartate transminase in subcellular fractions of rat and guinea-pig brain, Biochem, J. 106: 401–412.

    Google Scholar 

  • Fonnum, F., 1969, Radiochemical micro assay for the determination of choline acetyltransferase and acetylcholinesterase, Biochem. J. 115: 465–472.

    Google Scholar 

  • Fonnum, F., 1970, Typical and subcellular localization of choline acetyltransferase in rat hippocampal region, J. Neurochem. 17: 1029–1037.

    Google Scholar 

  • Fonnum, F., 1972a Localization of cholinergic and 7-aminobutyric acid containing pathways in brain, in “Metabolic Compartmentation in the Brain” (R. Balizs and I. E. Cremer, eds.), pp. 245–259, Macmillan, London.

    Google Scholar 

  • Fonnum, F., 1972b, Molecular aspects of compartmentation of choline acetyltransferase, in “Metabolic Compartmentation in the Brain” (R. Baldzs and I. E. Cremer, eds.), pp. 35–47, Macmillan, London.

    Google Scholar 

  • Fonnum, F., 1972c, Application of microchemical analysis and subcellular fractionation techniques to the study of neurotransmitters in discrete areas of mammalian brain, Adv. Biochem. Psychopharmacol. 6: 75–88.

    Google Scholar 

  • Fonnum, F., 1974, A rapid method for determination of choline acetyltransferase activity, J. Neurochem. 24: 407–409.

    Google Scholar 

  • Fonnum, F., 1975, Synthesis, storage and release of acetylcholine, in “Cholinergic Transmission” (P. Waser, ed.) Raven Press, New York.

    Google Scholar 

  • Fonnum, F., and Walberg, F., 1973a, An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals of the cat, Brain Res. 54: 115–127.

    Google Scholar 

  • Fonnum, F., and Walberg, F., 1973b, The concentration of GABA inhibitory nerve terminals, Brain Res. 62: 577–579.

    Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Walberg, F., 1970, Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axon and boutons in the cat, Brain Res. 20: 259–275.

    Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J., and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res. 71: 77–92.

    Google Scholar 

  • Gainer, H., 1972, Pattern of protein synthesis in indidual identified molluscan neurons, Brain Res. 39: 369–385.

    Google Scholar 

  • Geneser-Jensen, F., 1972a, Distribution of acetylcholinesterase in the hippocampal region of the guinea pig. II. Subiculum and hippocampus, Z. Zell forsch. Mikrosk. Anat. 124: 546–560.

    Google Scholar 

  • Geneser-Jensen, F., 1972b, Distribution of acetylcholinesterase in the hippocampal region of the guinea pig. III. The dentata area, Z Zell forsch. Mikrosk. Anat. 131: 481–495.

    Google Scholar 

  • Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous system and neuro-muscular function, Physiol Rev. 53: 1–120.

    Google Scholar 

  • Giller, E., Jr., and Schwartz, J. H., 1971, Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia California, J. Neurophysiol. 34: 93–107.

    Google Scholar 

  • Goldberg, A M., and McCaman, R. E., 1967, A quantitative microchemical study of choline acetyltransfera se and acetylcholinesterase in the cerebellum of several species, Life Sci. 6:1493–

    Google Scholar 

  • Graham, L. T., Jr., 1972, Intraretinal distribution of GAB A content and GAD activity, Brain Res. 36: 476–479.

    Google Scholar 

  • Graham, L. T., 1973, Distribution of glutamic acid decarboxylase activity and GABA content in the olfactory bulb, Life Sci. 12: 443–447.

    Google Scholar 

  • Graham, L. T., Jr., Baxter, C. F., and Lolley, R. N., 1970, In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens), Brain Res. 20: 379–388.

    Google Scholar 

  • Grofová, I., and Rinvik, E., 1970, An experimental electron microscopic study on the striatonigral projection in the cat, Exp. Brain Res. 11: 249–262.

    Google Scholar 

  • Guyenet, P., Agid, Y., Javoy, F., Beaujouan, J. C., and Glowinski, J., 1974, Action sélective des neuroelptiques sur les neurones cholinergiques du néostriatum chez le rat: Antagonisme vis-a-vis de l’apomorphine, C. R. Acad. Sci. 278: 2679–2682.

    Google Scholar 

  • Guyenet, P., Agod, Y., Javoy, F., Beaujouan, J. C., and Glowinski, J., Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system, Brain Res. 84: 227–244.

    Google Scholar 

  • Haber, B., Kuriyama, K., and Roberts, E., 1970, An anion stimulated glutamic acid decarboxylase in non-neural tissues: Occurrence and subcellular localization in mouse kidney and developing chick embryo brain, Biochem. Pharmacol. 19: 1119–1136.

    Google Scholar 

  • Hanley, M. R., Cottrell, G. A., Emson, P. C., and Fonnum, F., 1974, Enzymic synthesis of acetylcholine by a serotonin-containing neurone from Helix, Nature (London) 251: 631–633.

    Google Scholar 

  • Hattori, T., McGeer, P. L., Fibiger, H. C., and McGeer, E. G., 1973, On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies, Brain Res. 54: 103–114.

    Google Scholar 

  • Hebb, C., 1963, Formation, storage and liberation of acetylcholine, in “Cholinesterases and Anti-cholinesterase Agents” (G. B. Koelle, ed.), pp. 55–88, Springer-Verlag, Berlin.

    Google Scholar 

  • Highstein, S. M., Ito, M., and Tsuchia, T., 1971, Synaptic linkage in the vestibular-ocular reflex pathway of rabbit, Exp. Brain Res. 13: 306–326.

    Google Scholar 

  • Hökfelt, T., and Ljungdahl, Å., 1971, Uptake of [3H] noradrenaline and γ-[3H] aminobutyric acid in isolated tissues of rat: An autoradiographic and fluorescence microscopic study, Prog. Brain Res. 34: 87–102.

    Google Scholar 

  • Hoyle, G., and Burrows, M., 1973tf, Neural mechanisms underlying behavior in the locust Schistocerca greagria. I. Physiology of identified motorneurons in the metathoracic ganglion, J. Neurobiol. 4: 3–42.

    Google Scholar 

  • Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of [3H] GABA and [3H] glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.

    Google Scholar 

  • Iversen, L. L., and Schon, F., 1973, The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in CNS, in “New Concepts in Neurotransmitter Regulation” ( A. J. Mandell, ed.), pp. 153–193, Plenum Press, New York.

    Google Scholar 

  • Ito, M., Yoshida, M., Obata, K., Kawai, N., and Udo, M., 1970, Inhibitory control of intracerebellar nuclei by the Purkinje cell axons, Exp. Brain Res. 10: 64–80.

    Google Scholar 

  • Jansen, J., and Brodai, A., 1940, Experimental studies on the intrinsic fibers of the cerebellum. II. Corticonuclear projection, J. Comp. Neurol. 73: 267–321.

    Google Scholar 

  • Jansen, J., and Brodai, A., 1958, “Handbuch der Microscopischen Anatomie des Menschen, Vol. IV, “Nervensystem, Das Kleinhirn.” Springer-Verlag, Berlin.

    Google Scholar 

  • Karlsson, A., Fonnum, F., Malthe-Sørenssen, D., and Storm-Mathisen, J., 1974, Effect of the convulsive agent 3-mercaptopropionic acid on the levels of GABA, other amino acids and glutamate decarboxylase in different regions of the rat brain, Biochem. Pharmacol. 23: 3053–3061.

    Google Scholar 

  • Kása, P., and Silver, A., 1969, The correlation between choline acetyltransferase and acetylcholinesterase in different areas of the cerebellum of rat and guinea pig, J. Neurochem, 16: 389–397.

    Google Scholar 

  • Kataoka, K., Bak, I. J., Hassler, R., Kim, J. S., and Wagner, A., 1974, L-Glutamate decarboxylase and choline acetyltransferase in the substantia nigra and the striatum after surgical interruption of the strionigral fibres of the baboon, Exp. Brain Res. 19: 217–227.

    Google Scholar 

  • Kellogg, C., Lundborg, P., and Ramstedt, L., 1973, Analysis of capillary and parenchegmal aromatic L-amino acid decarboxylase activity in regional brain areas during ontogenic, Brain Res. 50: 369–378.

    Google Scholar 

  • Kim, J. S., Bak, I. J., Hassler, R., and Okada, Y., 1971, Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons, Exp. Brain Res. 14: 95–104.

    Google Scholar 

  • Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K., 1973, Choline: Selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581–593.

    Google Scholar 

  • Kuriyama, K., Haber, B., Sisken, B., and Roberts, E., 1966, The γ-aminobutyric acid system in rabbit cerebellum, Proc. Natl. Acad. Sci. U.S.A. 55: 846–852.

    Google Scholar 

  • Kuriyama, K., Sisken, B., Haber, B., and Roberts, E., 1968, The γ-aminobutyric acid system in rabbit retina, Brain Res. 9: 165–168.

    Google Scholar 

  • Lam, D. M. K., 1972, The biosynthesis and content of gamma-aminobutyric acid in the goldfish retina, J. Cell Biol. 54: 225–231.

    Google Scholar 

  • Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: Projections to hippocampal formation, medical cortex, nuclei of the ascending cholinergic reticular system, and the sub-fornical organ and supraoptic crest, Brain 90: 521–540.

    Google Scholar 

  • Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus, J. Physiol (London) 191: 215–224.

    Google Scholar 

  • Lundvall, O., and Bjorklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain, Acta Physiol Scand. 412: 1–48.

    Google Scholar 

  • Lynch, G. S., Lucas, P. A., and Deadwyler, S. A., 1972, The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat, Brain Res., 45: 617–621.

    Google Scholar 

  • McCaman, R. E., and Dewhurst, S. A., 1970, Choline acetyltransferase in individual neurones of Aplysia californica, J. Neurochem. 17: 1421–1426.

    Google Scholar 

  • McGeer, P. L., McGeer, E. G., Wada, J. A., and Jung, E., 1971a, Effect of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase, Brain Res. 32: 425–431.

    Google Scholar 

  • McGeer, P. L., McGeer, E. G., Fibiger, H. C., and Wickson, V., 1911b, Neostriatal choline acetylase and cholinesterase following selective brain lesions, Brain Res. 35: 308–314.

    Google Scholar 

  • McLaughlin, B. J., Wood, J. G., Saito, K., Barker, R., Vaughn, J. E., Roberts, E., and Wu, J.-Y., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–393.

    Google Scholar 

  • Malthe-Sørenssen, D., and Fonnum, F., 1972, Multiple forms of choline acetyltransferase in several species demonstrated by isoelectric focusing, Biochem, J. 127: 229–236.

    Google Scholar 

  • Nadler, J. V., Cotman, C. W., and Lynch, G. S., 1973, Altered distribution of choline acetyltransferase and acetylcholinesterase activities in the developing rat dentate gyrus following entorhinal lesion, Brain Res. 63: 215–230.

    Google Scholar 

  • Nafstad, P. H. J., and Blackstad, T. W., 1966, Distribution of mitochondria in pyramidal cells and boutons in hippocampal cortex, Z. Zellforsch. Mikrosk. Anat. 73: 234–245.

    Google Scholar 

  • Obata, K., and Highstein, S. M., 1970, Blocking by picrotoxin of both vestibular inhibition and GABA action of rabbit oculomotor neurones, Brain Res. 18: 538–541.

    Google Scholar 

  • Obata, K., and Takeda, K., 1969, Release of 7-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum, J. Neurochem, 16: 1043–1047.

    Google Scholar 

  • Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric on Deiters’ neurones, Exp. Brain Res. 4: 43–57.

    Google Scholar 

  • Olivier, A., Parent, A., Somard, H., and Poirier, L. J., 1970, Cholinesterase, striatopallidal and striatonigral afferents in the cat and the monkey, Brain Res. 18: 273–282.

    Google Scholar 

  • Osborne, N. N., 1972, The in vivo synthesis of serotonin in an identified serotonin-containing neuron of Helix pomatia, Int. J. Neurosci. 3: 215–228.

    Google Scholar 

  • Otsuka, M., Obata, K., Miyata, Y., and Tanaka, Y., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system, J. Neurochem. 18: 287–295.

    Google Scholar 

  • Pohle, W., and Matthies, H., 1970, Die Topohistochemie von Transmittersystem im Kortex und Hippokampus des Kaninchens, Acta Biol, Med. Germ. 25: 447–457.

    Google Scholar 

  • Precht, W., and Yoshida, M., 1971, Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin, Brain Res. 32: 229–233.

    Google Scholar 

  • Precht, W., Baker, R., and Okada, Y., 1974, Evidence for GABA as the synaptic transmitter of the inhibitory vestibulo-ocular pathway, Exp. Brain Res. 18: 415–428.

    Google Scholar 

  • Robinson, N., and Wells, F., 1973, Distribution and localization of sites of 7-aminobutyric acid metabolism in the adult rat brain, J. Anat. 114: 365–378.

    Google Scholar 

  • Salganicoff, L., and De Robertis, E., 1965, Subcellular distribution of the enzymes of the glutamatic acid, glutamine and γ-aminobutyric acid cycles in rat brain, J. Neurochem. 12: 287–309.

    Google Scholar 

  • Salvador, R. A., and Albers, R. W., 1959, The distribution of glutamic-γ-aminobutyric transaminase in the nervous sytem of the Rh monkey, J. Biol. Chem. 234: 922–928.

    Google Scholar 

  • Sarimachi, M., and Kataoka, K., 1974, Choline uptake by nerve terminals. A sensitive and specific marker of cholinergic innervation, Brain Res. 72: 350–353.

    Google Scholar 

  • Schafer, R., 1973, Acetylcholine: fast axoplasmic transport in insect chemoreceptor fibres, Science 180: 315–316.

    Google Scholar 

  • Schon, F., and Iversen, L. L., 1972, Selective accumulation of [3H] GABA by stellate cells in rat cerebellar in vivo, Brain Res. 42: 503–507.

    Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1961, The use of cholinesterase techniques combined with operative procedures to follow nervous pathways in the brain, Bibl. Anat. 2: 34–49.

    Google Scholar 

  • Silver, A., 1967, Cholinesterase of the central nervous system with special reference to the cerebellum, Rev. Neurobiol. 10: 57–109.

    Google Scholar 

  • Sims, K. L., Davis, G. A, and Bloom, F. E., 1973, Activities of 3.4-dihydroxy-L-phenylanine and 5-hydroxy-L-tryptophan decarboxylases in rat brain: Assay characteristics and distribution, J. Neurochem. 20: 449–464.

    Google Scholar 

  • Sotelo, C., Prevat, A., and Drian, M. J., 1972, Localization of [3H]GABA in tissue culture of rat cerebellum using electron microscopy autoradiography, Brain Res. 45: 302–308.

    Google Scholar 

  • Sparf, B., 1973, On the turn-over of acetylcholine in the brain, Acta Physiol Scand. Suppl. 397: 1–47.

    Google Scholar 

  • Storm-Mathisen, J., 1970, Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlated to histochemical staining, J. Neurochem. 17: 739–750.

    Google Scholar 

  • Storm-Mathisen, J., 1972, Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems. Evidence that the enzyme is localized in intrinsic neurones, Brain Res. 40: 215–235.

    Google Scholar 

  • Storm-Mathisen, J., 1975. Choline acetyltransferase and acetylcholinesterase in fascia dentata following lesion of the entorhinal afferents, Brain Res. 79: 181–197.

    Google Scholar 

  • Storm-Mathisen, J., and Fonnum, F., 1971, Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region, J. Neurochem. 18: 1105–1111.

    Google Scholar 

  • Straschill, M., and Perwein, J., 1969, The inhibition of retinal ganglion cells by catecholeamines and γ-aminobutyric acid,Pflü Arch. 312: 45–54.

    Google Scholar 

  • Szabó, J., 1962, Topical distribution of the striatal efferents in the monkey, Exp. Neurol 5: 21–36.

    Google Scholar 

  • Szabó, J., 1967, The efferent projections of the putamen in the monkey, Exp. Neurol 19: 463–476.

    Google Scholar 

  • Szabó, J., 1970, Projections from the body of the caudate nucleus in the Rhesus monkey, Exp. Neurol 27: 1–15.

    Google Scholar 

  • Szabó, J., 1972, The course and distribution of efferents from the tail of the caudate nucleus in the monkey, Exp. Neurol 37: 562–572.

    Google Scholar 

  • Usherwood, P. N. R., and Grundfest, H. 1965, Peripheral inhibition of skeletal muscle of insects, J. Neurophysiol 28: 497–518.

    Google Scholar 

  • Van den Berg, C. J., 1972, A model of compartmentation in mouse brain based on glucose and acetate metabolism, in “Metabolic Compartmentation in the Brain” (R. Balázs and I. E. Cremer, ed.), pp. 137–167, Macmillan, London.

    Google Scholar 

  • Van Gelder, N. M., 1965, A comparison of γ-aminobutyric acid metabolism in rabbit and mouse nervous tissue, J. Neurochem. 12: 239–244.

    Google Scholar 

  • Walberg, F., and Jansen, J., 1961, Cerebellar cortico-vestibular fibers in the cat, Exp. Neurol 3: 32–52.

    Google Scholar 

  • Walberg, F., and Jansen, J., 1964, Cerebellar cortico-nuclear projection studied experimentally with silver impregnation methods, J. Hirnforsch. 6: 348–354.

    Google Scholar 

  • Walker, R. J., Lambert, J. D., Woodruft, G. N., and Kerkut, G. A., 1970, Action potential shape and frequency as criteria for neuron identification in the snail Helix aspersa, Comp. Gen. Pharmacol. 1: 409–425.

    Google Scholar 

  • White, H. C., and Wu, J. C., 1973, Kinetics of choline acetyltransferase from human and other mammalian ceretial and peripheral nervous tissue, J. Neurochem. 20: 297–309.

    Google Scholar 

  • Yoshida, M., and Precht, W., 1971, Monosynaptic inhibition of neurons of the substantia nigra by caudate-nigral fibers, Brain Res. 32: 225–228.

    Google Scholar 

  • Yoshida, M., Rabin, A., and Anderson, M., 1972, Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers, Exp. Brain Res. 15: 333–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Fonnum, F. (1975). The Localization of Glutamate Decarboxylase, Choline Acetyltransferase, and Aromatic Amino Acid Decarboxylase in Mammalian and Invertebrate Nervous Tissue. In: Berl, S., Clarke, D.D., Schneider, D. (eds) Metabolic Compartmentation and Neurotransmission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4319-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4319-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4321-9

  • Online ISBN: 978-1-4613-4319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics