Uptake and Localization of Transmitter Amino Acids in the Nervous System

  • L. L. Iversen
  • Fabienne Dick
  • J. S. Kelly
  • F. Schon


This chapter will review the present status of research in our laboratory on the use of autoradiographic techniques for identifying and mapping the cellular distribution in mammalian CNS of neurons that use amino acid transmitters. This approach is based on the hypothesis that such neurons possess unique high-affinity uptake sites for the amino acids that they employ as transmitters, so that a particular category of neuron may be selectively labeled by exposure (of nervous tissue) to a low concentration of the radioactively labeled transmitter. A further assumption is that such high-affinity uptake sites for amino acid transmitters are localized exclusively in the neurons that store and release such substances. How far these basic assumptions are valid will be illustrated mainly by reference to the amino acid GABA, whose uptake and localization has so far been most extensively investigated.


Nerve Terminal Brain Slice Amino Acid Uptake Sensory Ganglion Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcar, V. J., and Johnston, G. A. R., 1972, The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem. 19: 2657–2666.CrossRefGoogle Scholar
  2. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord, J. Neurochem. 20: 529–539.CrossRefGoogle Scholar
  3. Beart, P. M., and Johnston, G. A. R., 1973, GABA uptake in rat brain slices: Inhibition by GABA analogues and by various drugs, J. Neurochem. 20: 319–324.CrossRefGoogle Scholar
  4. Beart, P. M., Kelly, J. S., and Schon, F. E., 1974, γ-Aminobutyric acid in the rat peripheral nervous system, pineal and posterior pituitary, Biochem. Soc. Trans. 2: 266–268.Google Scholar
  5. Bennett, J. P., Jr., Logan, W. J., and Snyder, S. H., 1972, Amino acid neurotransmitter candidates: Sodium-dependent high-affinity uptake by unique synaptosomal fractions, Science 178: 997–999.CrossRefGoogle Scholar
  6. Blasberg, R., and Lajtha, A., 1965, Substrate specificity of steady state amino acid transport in mouse brain slices, Arch. Biochem. Biophys. 112: 361–377.CrossRefGoogle Scholar
  7. Bloom, F. E., and Iversen, L. L., 1971, Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography, Nature (London) 229: 628–630.CrossRefGoogle Scholar
  8. Bodian, D., 1970, An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation, J. Cell Biol 44: 115–124.CrossRefGoogle Scholar
  9. Bond, P. A., 1973, The uptake of γ-3 H-aminobutyric acid by slices from various regions of rat brain and the effect of lithium, J. Neurochem. 20: 511–517.CrossRefGoogle Scholar
  10. Bowery, N. G., and Brown, D. A., 1972, γ-Aminobutyric acid uptake by sympathetic ganglia, Nature (London) New Biol 238: 89–91.Google Scholar
  11. Bruun, A., and Ehinger, B., 1972, Uptake of the putative neurotransmitter glycine into the rabbit retina, Invest. Ophthalmol 11: 191–198.Google Scholar
  12. Bruun, A., Ehinger, B., and Forsberg, A., 1974, In vitro uptake of β-alanine into rabbit retina neurons, Exp. Brain Res. 19: 239–247.CrossRefGoogle Scholar
  13. Campos-Ortega, J. A., 1974, Autoradiographic localization of 3 H-γ-aminobutyric acid uptake in the lamina ganglionaris of Musca and Drosophila, Z. Zellforsch. Mikrosk. Anat. 147: 415–431.CrossRefGoogle Scholar
  14. Ehinger, B., 1972, Cellular location of the uptake of some amino acids into the rabbit retina, Brain Res. 46: 297–311.CrossRefGoogle Scholar
  15. Ehinger, B., and Falck, B., 1971, Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine and L-dopa, Brain Res. 33: 157–172.CrossRefGoogle Scholar
  16. Elliott, K. A. C., and Van Gelder, N. M., 1958, Occlusion and metabolism of γ-aminobutyric acid by brain tissue, J. Neurochem. 3: 28–40.CrossRefGoogle Scholar
  17. Evans, P. D., 1974, An autoradiographical study of the localization of the uptake of glutamate by the peripheral nerves of the crab, Carcinus meanas, J. Cell Sci. 14: 351–367.Google Scholar
  18. Faeder, I. R., and Salpeter, M. M., 1970, Glutamate uptake by a stimulated insect nerve muscle preparation, J. Cell Biol 46: 300–307.CrossRefGoogle Scholar
  19. Goodchild, M., and Neal, M. J., 1973, The uptake of 3 H-γ-aminobutyric acid by the retina, Br. J. Pharmacol. 47: 529–542.Google Scholar
  20. Hattori, T., McGeer, P. L., Fibiger, H. C., and McGeer, E. G., 1973, On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies, Brain Res. 54: 103–114.CrossRefGoogle Scholar
  21. Henn, F. A., and Hamberger, A., 1971, Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. U.S.A. 68: 2686–2690.CrossRefGoogle Scholar
  22. Hökfelt, T., and Ljungdahl, Å., 1970, Cellular localization of gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: An autoradiographic study, Brain Res. 22: 391–393.CrossRefGoogle Scholar
  23. Hökfelt, T., and Ljungdahl, Å., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labeled glycine, Brain Res. 32: 189–194.CrossRefGoogle Scholar
  24. Hökfelt, T., and Ljungdahl, Å., 1972c, Applications of cytochemical techniques to the study of suspected transmitter substances in the nervous system, Adv. Biochem. Psychopharmacol. 6: 1–37.Google Scholar
  25. Hökfelt, T., and Ljungdahl, Å., 1912b, Autoradiographic identification of cerebral and cerebellar cortical neurones accumulating labeled gamma-aminobutyric acid (3 H-GABA), Exp. Brain Res. 14: 354–362.Google Scholar
  26. Hökfelt, T., Jonsson, G., and Ljungdahl, Å., 1970, Regional uptake and subcellular localization of 3 H-gamma-aminobutyric acid (GABA) in rat brain slices, Life Sci. 9: 203–212.CrossRefGoogle Scholar
  27. Hösli, L., Hösli, E., and Andres, P. F., 1973, Nervous tissue culture—A model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62: 597–602.CrossRefGoogle Scholar
  28. Hyde, J. C., and Robinson, N., 1974, Localization of sites of GABA catabolism in the rat retina, Nature (London) 248: 432–433.CrossRefGoogle Scholar
  29. Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3 H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.CrossRefGoogle Scholar
  30. Iversen, L. L., and Johnston, G. A. R., 1971, GABA uptake in rat CNS: A comparison of uptake in slices and homogenates and the effects of some inhibitors, J. Neurochem. 18: 1939–1950.CrossRefGoogle Scholar
  31. Iversen, L. L., and Neal, M. J., 1968, The uptake of 3 H-GABA by slices of rat cerebral cortex, J. Neurochem. 15: 1141–1149.CrossRefGoogle Scholar
  32. Iversen, L. L., and Snyder, S. H., 1968, Synaptosomes: Different populations storing catecholamines and gamma-aminobutyric acid in homogenates of rat brain, Nature (London) 220: 796–798.CrossRefGoogle Scholar
  33. Johnston, G. A. R., and Iversen, L. L., 1971, Glycine uptake in rat CNS slices and homogenates: Evidence for different uptake systems in spinal cord and cerebral cortex, J. Neurochem. 18: 1951–1961.CrossRefGoogle Scholar
  34. Kelly, J. S., Gottesfeld, Z., and Schon, F. E., 1973, Reduction in GAD I activity from the dorsal lateral region of the deafferented rat spinal cord, Brain Res. 62: 581–586.CrossRefGoogle Scholar
  35. Kelly, J. S., Dick, F., and Schon, F. E., 1975, The autoradiographic localization of the GABA-releasing nerve terminals in cerebellar glomeruli, Brain Res. 85: 255–259.CrossRefGoogle Scholar
  36. Lam, D. M. K., and Steinman, L., 1971, The uptake of γ-3H-aminobutyric acid in the goldfish retina, Proc. Natl. Acad. Sci. U.S.A. 68: 2777–2781.CrossRefGoogle Scholar
  37. Lasher, R. S., 1974, The uptake of 3H-GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69: 235–254.CrossRefGoogle Scholar
  38. Levi, G., and Raiteri, M., 1973, Detectability of high and low affinity uptake systems for GABA and gluatamate in rat brain slices and synaptosomes, Life Sci. 12: 81–88.CrossRefGoogle Scholar
  39. Levi, G., Bertollini, A., Chen, J., and Raiteri, M., 1974, Regional differences in the synaptosomal uptake of 3 H-γ-aminobutyric acid and 14C-glutamate and possible role of exchange processes, J. Pharmacol. Exp. Ther. 188: 429–438.Google Scholar
  40. Ljungdahl, Å., and Hökfelt, T., 1973, Autoradiographic uptake patterns of 3 H-GABA and 3H-glycine in central nervous tissues with special reference to the cat spinal cord, Brain Res. 62: 587–595.CrossRefGoogle Scholar
  41. Ljungdahl, Å., Seiger, A., Hökfelt, T., and Olson, L., 1973, 3 H-GABA uptake in growing cerebellar tissue: autoradiography of intraocular transplants, Brain Res. 61: 379–384.Google Scholar
  42. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamate and aspartic acids in synaptosomes of rat central nervous tissue, Brain Res. 42: 413–431.CrossRefGoogle Scholar
  43. McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughin, J. E., Roberts, E., and Wu, J. Y., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.CrossRefGoogle Scholar
  44. Marshall, J., and Voaden, M., 1974a, An investigation of the cells incorporating 3H-GABA and 3H-glycine in the isolated retina of the rat, Exp. Eye Res. 18: 367–370.CrossRefGoogle Scholar
  45. Marshall, J., and Voaden, M., 1974b, A study of γ-3 H-aminobutyric acid and 3H-glycine accumulation by the isolated pigeon retina using scintillation autoradiography, Biochem. Soc. Trans. 2: 268–269.Google Scholar
  46. Martin, D. L., 1973, Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes, J. Neurochem. 21: 345–356.CrossRefGoogle Scholar
  47. Matus, A. I., and Dennison, M. E., 1971, Autoradiographic localization of tritiated glycine at “flat vesicle” synapses in spinal cord, Brain Res. 32: 195–197.CrossRefGoogle Scholar
  48. Matus, A. I., and Dennison, M. E., 1972, Autoradiographic study of uptake of exogenous glycine by vertebrate spinal cord slices in vitro, J. Neurocytol. 1: 27–34.CrossRefGoogle Scholar
  49. Minchin, M. C. W., and Beart, P. M., 1974a, Compartmentation of amino acid metabolism in the rat dorsal root ganglion: A metabolic and autoradiographic study, Brain Res. 83: 437–449.CrossRefGoogle Scholar
  50. Minchin, M. C. W., and Beart, P. M., 1974b, Compartmentation of amino acid metabolism in the rat posterior pituitary, J. Neurochem. 24: 881–884.CrossRefGoogle Scholar
  51. Miyata, Y., and Otsuka, M., 1972, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischemia, J. Neurochem. 19: 1833–1834.CrossRefGoogle Scholar
  52. Nakamura, R., and Nagayama, M., 1966, Amino acid transport by slices from various regions of the brain, J. Neurochem. 13: 305–313.CrossRefGoogle Scholar
  53. Neal, M. J., 1971, The uptake of 14C-glycine by slices of mammalian spinal cord, J. Physiol. (London) 215: 103–118.Google Scholar
  54. Neal, M. J., and Iversen, L. L., 1969, Subcellular distribution of endogenous and 3H-GABA in rat cerebral cortex, J. Neurochem. 16: 1245–1252.CrossRefGoogle Scholar
  55. Neal, M. J., and Iversen, L. L., 1972, Autoradiographic localization of 3H-GABA in rat retina, Nature (London) 235: 217–218.CrossRefGoogle Scholar
  56. Neal, M. J., and Pickles, H. G., 1969, Uptake of 14C-glycine by spinal cord, Nature (London) 222: 679–680.CrossRefGoogle Scholar
  57. Orkand, P. M., and Kravitz, E. A., 1971, Localization of the sites of aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations, J. Cell Biol. 49: 75–89.CrossRefGoogle Scholar
  58. Roberts, P. J., and Keen, P., 1974, 14C-Glutamate uptake and compartmentation in glia of rat dorsal sensory ganglion, J. Neurochem. 23: 201–209.Google Scholar
  59. Robinson, N., and Wells, F., 1973, Distribution and localization of sites of gamma-aminobutyric acid metabolism in the adult rat brain, J. Anat. 114: 365–378.Google Scholar
  60. Saito, K., Barber, R., Wu, J. Y., Matsuda, T., Roberts, E., and Vaughin, J. E., 1974, Immunohisto- chemical localization of glutamate decarboxylase in rat cerebellum, Proc. Natl. Acad. Sci. U.S.A. 71: 269–273.CrossRefGoogle Scholar
  61. Sano, K., and Roberts, E., 1963, Binding of α-aminobutyric acid by mouse brain preparations, Biochem. Pharmacol 12: 489–502.CrossRefGoogle Scholar
  62. Schon, F., and Iversen, L. L., 1972, Selective accumulation of 3H-GABA by stellate cells in rat cerebellar cortex in vivo, Brain Res. 42: 503–507.CrossRefGoogle Scholar
  63. Schon, F. E., and Kelly, J. S., 1974a, The characterization of 3H-GABA uptake into the satellite glial cells of rat sensory ganglia, Brain Res. 66: 289–300.CrossRefGoogle Scholar
  64. Schon, F. E., and Kelly, J. S., 1974b, Autoradiographic localization of 3H-GABA and 3H-glutamate over satellite glial cells, Brain Res. 66: 275–288.CrossRefGoogle Scholar
  65. Schon, F. E., and Kelly, J. S., 1975, Selective uptake of [3H] β-alanine by glia: Association with the glial uptake system for GABA, Brain Res., 86: 243–257.CrossRefGoogle Scholar
  66. Schon, F. E., Beart, P. M., Chapman, D., and Kelly, J. S., 1975, On GABA metabolism in the gliocyte cells of the rat pineal gland, Brain Res., 85: 479–490.CrossRefGoogle Scholar
  67. Schrier, B. K., and Thompson, E. J., 1974, On the role of glial cells in the mammalian nervous system: Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumour cells, J. Biol. Chem 249: 1769–1780.Google Scholar
  68. Simon, J. R., and Martin, D. L., 1973, The effects of L-2,4-diaminobutyric acid on the uptake of gamma-aminobutyric acid by synaptosomal fraction from rat brain, Arch. Biochem., Biophys. 157: 348–355.CrossRefGoogle Scholar
  69. Snodgrass, S. R., and Iversen, L. L., 1973, Effects of aminooxyacetic acid on 3H-GABA uptake by brain slices, J. Neurochem 20: 431–439.CrossRefGoogle Scholar
  70. Snodgrass, S. R., and Iversen, L. L., 1974, Amino acid uptake into human brain tumours, Brain Res. 76: 95–107.CrossRefGoogle Scholar
  71. Snyder, S. H., Young, A. B., Bennet, J. P., and Mulder, A. H., 1973, Synaptic biochemistry of amino acids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 32: 2039–2047.Google Scholar
  72. Sotelo, C., Privat, A., and Drian, M. J., 1972, Localization of 3H-GABA in tissue culture of rat cerebellum using electron microscopic radioautography, Brain Res. 45: 302–308.CrossRefGoogle Scholar
  73. Tsukada, Y., Nagata, Y., Herano, S., and Matsutani, T., 1963, Active transport of amino acid into cerebral cortex slices, J. Neurochem. 10: 241–256.CrossRefGoogle Scholar
  74. Weinstein, H., Varon, S., Muhlemann, D. R., and Roberts, E., 1965, A carrier-mediated transfer model for the accumulation of 14C-γ-aminobutyric acid by subcellular particles, Biochem. Pharmacol. 14: 273–288.CrossRefGoogle Scholar
  75. Wilkin, G., Wilson, J. E., Balázs, R., Schon, F. E., and Kelly, J. S., 1974, A comparison of GABA uptake into the excitatory and inhibitory nerve terminals of the isolated cerebellar glomerulus, Nature (London) 252: 397–399.CrossRefGoogle Scholar
  76. Wofsey, A. R., Kuhar, M. J., and Snyder, S. R., 1971, A unique synaptosomal fraction which accumulates glutamic and aspartic acids in brain tissue, Proc. Natl. Acad. Sci. U.S.A. 68: 1102–1106.CrossRefGoogle Scholar
  77. Young, J. A. C., Brown, D. A., Kelly, J. S., and Schon, F. E., 1973, Autoradiographic localization of sites of 3H-y-aminobutyric acid accumulation in peripheral autonomic ganglia, Brain Res. 63: 479–486.CrossRefGoogle Scholar
  78. Young, A. B., Oster-Granite, M. L., Herndon, R. M., and Snyder, S. H., 1974, Glutamic acid: Selective depletion by viral-induced granule cell loss in hamster cerebellum, Brain Res. 73: 1–13.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • L. L. Iversen
    • 1
  • Fabienne Dick
    • 1
  • J. S. Kelly
    • 1
  • F. Schon
    • 1
  1. 1.M. R. C. Neurochemical Pharmacology Unit Department of PharmacologyUniversity of CambridgeCambridgeEngland

Personalised recommendations