Skip to main content

Biochemical Dissection of the Cerebellum— Enzyme Composition of Subcellular Fractions, Including Complex Structures Derived from the Cerebellar Glomeruli

  • Chapter
  • 88 Accesses

Abstract

The goal of our subcellular fractionation studies of the cerebellum was to obtain pure, morphologically well-defined structures that could be used to help solve biochemical problems. As there were initially no other means of determining the composition of the various isolated fractions, electron microscopic examinations were of paramount importance [see Chapter 21 (ii) in this volume]. As the first step in biochemical characterization, we will describe our studies of the enzyme composition of various cerebellar fractions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balázs, R., Dahl, D., and Harwood, J. R., 1966, Subcellular distribution of enzymes of glutamate metabolism in rat brain, J. Neurochem. 13: 897–905.

    Article  Google Scholar 

  • Balázs, R., Hajós, F., Johnson, A. L., Tapia, R., and Wilkin, G., 1975, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. III. Isolation of large fragments of cerebellar glomeruli, Brain Res., 86: 17–30.

    Article  Google Scholar 

  • Bisti, S., Iosif, G., and Strata, P., 1971, Supression of inhibition in the cerebellar cortex by picrotoxin and bicuculline, Brain Res. 28: 591–593.

    Article  Google Scholar 

  • Coakley, W. T., 1974, Comparison of conditions of tissue fragmentation, Brain Res. 70: 281–284.

    Article  Google Scholar 

  • Crawford, J. M., Curtis, D. R., Voorheve, P. E., and Wilson, V. J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat, J. Physiol (London) 186: 139–165.

    Google Scholar 

  • De Robertis, E., Pellegrino De Iraldi, A., Rodriguez De Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergic and non-cholinergic nerve endings in rat brain. I. J. Neurochem. 9: 23–35.

    Google Scholar 

  • De Vries, G. H., Norton, W. T., and Raine, C. S., 1972, Axons: Isolation from mammalian central nervous system, Science 175: 1370–1372.

    Article  Google Scholar 

  • Eccles, J. C., Ito, M., and Szentagothai, S., 1967, “The Cerebellum as a Neuronal Machine,” Springer-Verlag, Berlin.

    Google Scholar 

  • Fonnum, F., 1968, Choline acetyltransferase binding to and release from membranes, Biochemical J. 109: 389–398.

    Google Scholar 

  • Hajós, F., and Kerpel-Fronius, S., 1971, Electron microscope histochemical evidence for a partial or total block of the tricarboxylic acid cycle in the mitochondria of presynaptic axon terminals, J. Cell Biol. 51: 216–222.

    Article  Google Scholar 

  • Hajós, F., Tapia, R., Wilkin, G., Johnson, A. L., and Balázs, R., 1974, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. I. Preservation of large fragments of the cerebellar glomeruli, Brain Res. 70: 261–279.

    Article  Google Scholar 

  • Hajós, F., Wilkin, G., Wilson, J., and Balázs, R., 1975, A rapid procedure for obtaining a preparation of large fragments of the cerebellar glomeruli in high purity, J. Neurochem. 24: 1277–1278.

    Article  Google Scholar 

  • Kása, A., and Silver, A., 1969, The correlation between choline acetyltransferase and acetylcholines terase activity in different areas of the cerebellum of rat and guinea pig, J. Neurochem. 16: 389–396.

    Article  Google Scholar 

  • Kornguth, S. E., Flangas, A. L., Geison, R. L., and Scott, G., 1972, Morphology, isopycnic density and lipid content of synaptic complexes isolated from developing cerebellums and different brain regions, Brain Res. 37: 53–68.

    Article  Google Scholar 

  • Lemkey-Johnston, N., and Larramendi, L. M. H., 1968, The separation and identification of fractions of non-myelinated axons from the cerebellum of cat, Exp. Brain Res. 5: 326–340.

    Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42: 413–431.

    Article  Google Scholar 

  • McCance, I., and Phillis, J. W., 1968, Cholinergic mechanisms in the cerebellar cortex, Int. J. Neuropharmacol. 7: 447–462.

    Article  Google Scholar 

  • McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E., and Wu, J., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.

    Article  Google Scholar 

  • Neidle, A., Van den Berg, C. J., and Grynbaum, A., 1969, The heterogeneity of rat brain mitochondria isolated on continuous sucrose grandients, J. Neurochem. 16: 225–234.

    Article  Google Scholar 

  • Palay, S. W., and Chan-Palay, V., 1974, “Cerebellar Cortex Cytology and Organization,” Springer-Verlag, New York.

    Book  Google Scholar 

  • Reijnierse, G. L. A., 1973, Heterogeneity of mitochondria in developing brain, Thesis, University of Leiden, Leiden, The Netherlands.

    Google Scholar 

  • Tapia, R., Hajós, F., Wilkin, G., Johnson, A. L., and Balázs, R., 1974, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. II. Resolution of morphologically characterized fractions, Brain Res. 70: 265–299.

    Article  Google Scholar 

  • Wilkin, G. P., 1975, Biochemical and morphological characteristics of perikarya and subcellular structures including specific types of nerve terminals isolated from the rat cerebellum, Ph.D. thesis, Council for National Academic Awards.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Wilkin, G.P., Balázs, R., Tapia, R., Reijnierse, G.L.A., Hajós, F. (1975). Biochemical Dissection of the Cerebellum— Enzyme Composition of Subcellular Fractions, Including Complex Structures Derived from the Cerebellar Glomeruli. In: Berl, S., Clarke, D.D., Schneider, D. (eds) Metabolic Compartmentation and Neurotransmission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4319-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4319-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4321-9

  • Online ISBN: 978-1-4613-4319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics