Advertisement

Biochemical Dissection of the Cerebellum— Enzyme Composition of Subcellular Fractions, Including Complex Structures Derived from the Cerebellar Glomeruli

  • G. P. Wilkin
  • Robert Balázs
  • R. Tapia
  • G. L. A. Reijnierse
  • F. Hajós

Abstract

The goal of our subcellular fractionation studies of the cerebellum was to obtain pure, morphologically well-defined structures that could be used to help solve biochemical problems. As there were initially no other means of determining the composition of the various isolated fractions, electron microscopic examinations were of paramount importance [see Chapter 21 (ii) in this volume]. As the first step in biochemical characterization, we will describe our studies of the enzyme composition of various cerebellar fractions.

Keywords

Myelinated Axon Choline Acetyltransferase ChAT Activity Axon Segment Relative Specific Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balázs, R., Dahl, D., and Harwood, J. R., 1966, Subcellular distribution of enzymes of glutamate metabolism in rat brain, J. Neurochem. 13: 897–905.CrossRefGoogle Scholar
  2. Balázs, R., Hajós, F., Johnson, A. L., Tapia, R., and Wilkin, G., 1975, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. III. Isolation of large fragments of cerebellar glomeruli, Brain Res., 86: 17–30.CrossRefGoogle Scholar
  3. Bisti, S., Iosif, G., and Strata, P., 1971, Supression of inhibition in the cerebellar cortex by picrotoxin and bicuculline, Brain Res. 28: 591–593.CrossRefGoogle Scholar
  4. Coakley, W. T., 1974, Comparison of conditions of tissue fragmentation, Brain Res. 70: 281–284.CrossRefGoogle Scholar
  5. Crawford, J. M., Curtis, D. R., Voorheve, P. E., and Wilson, V. J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat, J. Physiol (London) 186: 139–165.Google Scholar
  6. De Robertis, E., Pellegrino De Iraldi, A., Rodriguez De Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergic and non-cholinergic nerve endings in rat brain. I. J. Neurochem. 9: 23–35.Google Scholar
  7. De Vries, G. H., Norton, W. T., and Raine, C. S., 1972, Axons: Isolation from mammalian central nervous system, Science 175: 1370–1372.CrossRefGoogle Scholar
  8. Eccles, J. C., Ito, M., and Szentagothai, S., 1967, “The Cerebellum as a Neuronal Machine,” Springer-Verlag, Berlin.Google Scholar
  9. Fonnum, F., 1968, Choline acetyltransferase binding to and release from membranes, Biochemical J. 109: 389–398.Google Scholar
  10. Hajós, F., and Kerpel-Fronius, S., 1971, Electron microscope histochemical evidence for a partial or total block of the tricarboxylic acid cycle in the mitochondria of presynaptic axon terminals, J. Cell Biol. 51: 216–222.CrossRefGoogle Scholar
  11. Hajós, F., Tapia, R., Wilkin, G., Johnson, A. L., and Balázs, R., 1974, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. I. Preservation of large fragments of the cerebellar glomeruli, Brain Res. 70: 261–279.CrossRefGoogle Scholar
  12. Hajós, F., Wilkin, G., Wilson, J., and Balázs, R., 1975, A rapid procedure for obtaining a preparation of large fragments of the cerebellar glomeruli in high purity, J. Neurochem. 24: 1277–1278.CrossRefGoogle Scholar
  13. Kása, A., and Silver, A., 1969, The correlation between choline acetyltransferase and acetylcholines terase activity in different areas of the cerebellum of rat and guinea pig, J. Neurochem. 16: 389–396.CrossRefGoogle Scholar
  14. Kornguth, S. E., Flangas, A. L., Geison, R. L., and Scott, G., 1972, Morphology, isopycnic density and lipid content of synaptic complexes isolated from developing cerebellums and different brain regions, Brain Res. 37: 53–68.CrossRefGoogle Scholar
  15. Lemkey-Johnston, N., and Larramendi, L. M. H., 1968, The separation and identification of fractions of non-myelinated axons from the cerebellum of cat, Exp. Brain Res. 5: 326–340.Google Scholar
  16. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42: 413–431.CrossRefGoogle Scholar
  17. McCance, I., and Phillis, J. W., 1968, Cholinergic mechanisms in the cerebellar cortex, Int. J. Neuropharmacol. 7: 447–462.CrossRefGoogle Scholar
  18. McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E., and Wu, J., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.CrossRefGoogle Scholar
  19. Neidle, A., Van den Berg, C. J., and Grynbaum, A., 1969, The heterogeneity of rat brain mitochondria isolated on continuous sucrose grandients, J. Neurochem. 16: 225–234.CrossRefGoogle Scholar
  20. Palay, S. W., and Chan-Palay, V., 1974, “Cerebellar Cortex Cytology and Organization,” Springer-Verlag, New York.CrossRefGoogle Scholar
  21. Reijnierse, G. L. A., 1973, Heterogeneity of mitochondria in developing brain, Thesis, University of Leiden, Leiden, The Netherlands.Google Scholar
  22. Tapia, R., Hajós, F., Wilkin, G., Johnson, A. L., and Balázs, R., 1974, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. II. Resolution of morphologically characterized fractions, Brain Res. 70: 265–299.CrossRefGoogle Scholar
  23. Wilkin, G. P., 1975, Biochemical and morphological characteristics of perikarya and subcellular structures including specific types of nerve terminals isolated from the rat cerebellum, Ph.D. thesis, Council for National Academic Awards.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. P. Wilkin
    • 1
  • Robert Balázs
    • 1
  • R. Tapia
    • 2
  • G. L. A. Reijnierse
    • 3
  • F. Hajós
    • 4
  1. 1.MRC Developmental Neurobiology UnitMedical Research Council LaboratoriesCarshalton SurreyEngland
  2. 2.Instituto de Biologia Departmento de Biologia ExperimentalUniversidad Nacional Autonoma de MexicoApartadoMexico
  3. 3.Department of BiochemistryUniversity of LeidenLeidenThe Netherlands
  4. 4.First Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations