Contractile Proteins in Relation to Transmitter Release

  • S. Berl
  • W. J. Nicklas

Abstract

Actomyosin, the protein system responsible for muscle contraction, has been most studied, and is best understood, in terms of its composition, structural relationship, and function, in striated muscle. It has become increasingly evident, however, that this protein complex is not limited to muscle; studies indicate its presence in a variety of other cells some of rather primitive origin. For a recent review of actomyosin-like protein in nonmuscle cells see Pollard and Weihing (1974).

Keywords

Sucrose Torque Mold Sarcoma Epinephrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., 1966, A simple method for isolation of nerve-ending particles from rat brain, Biochim. Biophys. Acta 121: 403–406.CrossRefGoogle Scholar
  2. Adelman, M. R., and Taylor, E. W., 1969a, Isolation of an actomyosin-like protein complex from slime mold Plasmodium and the separation of the complex into actin- and myosin-like fractions, Biochemistry 8: 4964–4975.CrossRefGoogle Scholar
  3. Adelman, M. R., and Taylor, E. W., 1969b, Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry 8: 4976–4988.CrossRefGoogle Scholar
  4. Adelstein, R. S., and Kuehl, M., 1970, Structural studies on rabbit skeletal actin. I. Isolation and characterization of the peptides produced by cyanogen bromide cleavage, Biochemistry 9: 1355–1364.CrossRefGoogle Scholar
  5. Bendall, J. R., 1969, “Muscles, Molecules and Movement,” Elsevier, New York.Google Scholar
  6. Benitez, H. H., Murray, M. R., and Wooley, D. W., 1955, Effects of serotonin and certain of its antagonists upon oligodendroglial cells in vitro, “Proceedings of the 2nd International Congress of Neuropathology,” Pt. II, pp. 423–428, Excerpta Medica Foundation, Amsterdam.Google Scholar
  7. Berl, S., and Puszkin, S., 1970, Mg2+-Ca2+-Activated adenosine triphosphatase system isolated from mammalian brain, Biochemistry 9: 2058–2067.CrossRefGoogle Scholar
  8. Berl, S., Puszkin, S., and Nicklas, W. J., 1973, Actomyosin-like protein in brain, Science 179: 441–446.CrossRefGoogle Scholar
  9. Bettex-Galland, M., and Luscher, E. F., 1960, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.CrossRefGoogle Scholar
  10. Boullin, D. J., 1967, The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves, J. Physiol (London) 189: 85–99.Google Scholar
  11. Carsten, M. E., 1971, Uterine smooth muscle: Troponin, Arch. Biochem. Biophys. 147: 353–357.CrossRefGoogle Scholar
  12. Chang, C.-M., and Goldman, R. D., 1973, The localization of actin-like fibers in cultured neuro-blastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867–874.CrossRefGoogle Scholar
  13. Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom, J. Cell Biol. 52: 1–14.CrossRefGoogle Scholar
  14. Clark, J. B., and Nicklas, W. J., 1970, The preparation of rat brain mitochondria. Preparation and characterization, J. Biol. Chem. 245: 4724–4731.Google Scholar
  15. DeRobertis, E., Alberici, M., Rodriguez De Lores Arnaiz, G., and Azcurra, J. M., 1966, Isolation of different types of synaptic membranes from the brain cortex, Life Sci. 5: 577–582.Google Scholar
  16. Douglas, W. W., 1965, Calcium dependent links in stimulus-secretion coupling in the adrenal medulla and neurohypophysis, in “International Wenner-Gren Symposium, Stockholm,” pp. 267–290, Pergamon Press, London.Google Scholar
  17. Douglas, W. W., 1968, The First Gaddum Memorial Lecture. Stimulus-secretion coupling. The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34: 451–474.Google Scholar
  18. Douglas, W. W., and Sorimachi, M., 1972, Affects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones, Br. J. Pharmacol. 45: 143–144 P.Google Scholar
  19. Dreizen, P., and Gershman, L. C., 1970, Molecular basis of muscle contraction. Myosin, Trans. N.Y. Acad. Sci. 32: 170–203.Google Scholar
  20. Fine, R. E., and Bray, D., 1971, Actin in growing nerve cells, Nature (London) New Biol 234: 115–118.CrossRefGoogle Scholar
  21. Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., 1973, Tropomyosin in brain and growing neurones, Nature (London) New Biol 245: 182–186.CrossRefGoogle Scholar
  22. Granata, F., Traina, M. E., Frontali, N., and Bertolini, B., 1974, Effects of black widow spider venom on acetylcholine release from Torpedo electric tissues slices and subcellular fractions in vitro, Comp. Biochem. Physiol A 48: 1–7.CrossRefGoogle Scholar
  23. Hanson, J. P., Repke, D. I., Katz, A. M., and Aledort, L. M., 1972, A troponin-tropomyosin-like Ca++-sensitizing system in human platelets, Intn. Soc. Thrombosis Haemostasis III Congr. Washington, D. C. (Abstr.): 200.Google Scholar
  24. Hartshorne, D. J., and Mueller, H., 1967, Separation and recombination of the ethylene glycol bis (β-aminoethyl ether)-N,N1-tetraacetic acid-sensitizing factor obtained from a low ionic strength extract of natural actomyosin, J. Biol Chem. 242: 3089–3092.Google Scholar
  25. Hatano, S., and Oosawa, F., 1966c, Extraction of an actin-like protein from the Plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle, J. Cell Physiol 68: 197–202.CrossRefGoogle Scholar
  26. Hatano, S., and Oosawa, F., 1966b, Isolation and characterization of Plasmodium actin, Biochim. Biophys. Acta 127: 488–498.CrossRefGoogle Scholar
  27. Hatano, S., and Tazawa, M., 1968, Isolation, purification and characterization of myosin B from myxomycete Plasmodium, Biochim. Biophys. Acta 154: 507–519.Google Scholar
  28. Hatano, S., Kondo, H., and Miki-Noumura, T., 1969, Purification of sea urchin egg actin, Exp. Cell Res. 55: 275–277.CrossRefGoogle Scholar
  29. Hoffman-Berling, H., 1956, Das Kontraktile eiweiss undifferenzierter zellen, Biochim. Biophys. Acta 19: 453–463.CrossRefGoogle Scholar
  30. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscles. J. Mol. Biol 7: 281–308.CrossRefGoogle Scholar
  31. Huxley, H. E., 1969, Mechanism of muscular contraction, Science 164: 1356–1366.CrossRefGoogle Scholar
  32. Katz, B., 1962, The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action, Proc. R. Soc. London Ser. B 155: 455–477.CrossRefGoogle Scholar
  33. Katz, B., 1971, Quantal mechanism of neural transmitter release, Science 173: 123–126.CrossRefGoogle Scholar
  34. Katz, B., and Miledi, R., 1967a, The timing of calcium action during neuromuscular transmission, J. Physiol (London) 189: 535–544.Google Scholar
  35. Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. R. Soc. London Ser. B 167: 23–38.CrossRefGoogle Scholar
  36. Kirpekar, S. M., and Misu, Y., 1967, Release of noradrenaline by splenic nerve stimulation and its dependence on calcium, J. Physiol (London) 189: 219–234.Google Scholar
  37. Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol Chem. 249: 2268–2274.Google Scholar
  38. Loewy, A. G., 1952, An actomyosin-like substance from the Plasmodium of a myxomycete, J. Cell Comp. Physiol 40: 127–156.CrossRefGoogle Scholar
  39. Mahendran, C., Nicklas, W. J., and Berl, S., 1974, Evidence for calcium-sensitive component in brain actomyosin-like protein (neurostenin), J. Neurochem. 23: 497–501.CrossRefGoogle Scholar
  40. Malaisse, W. J., Malaisse-Lagae, F., Walker, M. O., and Lacy, P. E., 1971, The stimulus-secretion coupling of glucose-induced insulin release, Diabetes 20: 257–265.Google Scholar
  41. Manasek, F. J., Burnside, B., and Stroman, J., 1972, The sensitivity of developing cardiac myofibrils to cytochalasin B., Proc. Natl Acad. Sci. U.S.A. 69: 302–312.CrossRefGoogle Scholar
  42. Miki-Noumura, T., 1969, An actin-like protein of the sea urchin eggs. II. Direct isolation procedure, Dev. Growth Differ. 11: 219–231.CrossRefGoogle Scholar
  43. Nicklas, W. J., and Berl, S., 1974, Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, Nature (London) 247: 471–473.CrossRefGoogle Scholar
  44. Nicklas, W. J., Puszkin, S., and Berl, S., 1973, Effect of vinblastine and colchicine on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, J. Neurochem 20: 109–121.CrossRefGoogle Scholar
  45. Poisner, A. M., and Bernstein, J., 1971, A possible role of microtubules in catecholamine release from the adrenal medulla: Effect of colchicine, vinca alkaloids and deuterium oxide, J. Pharmacol. Exp. Ther. 177: 102–108.Google Scholar
  46. Pollard, T. D., and Korn, E., 1973, The “contractile” proteins of Acanthamoeba castellanii, Cold Spring Harbor Symp. Quant. Biol XXXVII: 573–583.Google Scholar
  47. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Crit. Rev. Biochem. Jan.: 1–65.Google Scholar
  48. Pomerat, C. M., Handelman, W. J., and Raiborn, C. W., Jr., 1967, Dynamic activities of nervous tissue in vitro, in “The Neurone” (H. Hyden, ed.), pp. 119–178, Elsevier, Amsterdam.Google Scholar
  49. Portzehl, H., Schramm, G., and Weber, H. H., 1950, Aktomyosin und seine komponenten. I. Mitt., Z. Naturforsch. Teil B 5: 61–74.Google Scholar
  50. Puszkin, S., and Berl, S., 1972, Actomyosin-like protein from brain: Separation and characterization of the actin-like component, Biochim. Biophys. Acta 256: 695–709.CrossRefGoogle Scholar
  51. Puszkin, S., Berl, S., Puszkin, E., and Clarke, D. D., 1968, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171.CrossRefGoogle Scholar
  52. Puszkin, S., Nicklas, W. J., and Berl, S., 1972, Actomyosin-like protein in brain: Subcellular distribution, J. Neurochem. 19: 1319–1333.CrossRefGoogle Scholar
  53. Puszkin, E., Puszkin, S., Lo, L. W., and Tanenbaum, S. W., 1973, Binding of cytochalasin D to platelet and muscle myosin, J. Biol Chem. 248: 7754–7761.Google Scholar
  54. Rees, M. K., and Young, M., 1967, Studies on the isolation and molecular properties of homogenous globular actin, J. Biol Chem. 242: 4449–4458.Google Scholar
  55. Schofield, J. G., 1971, Cytochalasin B and release of growth hormone, Nature (London) New Biol 234: 215–216.CrossRefGoogle Scholar
  56. Senda, N., Shibata, N., Tatsumi, N., Kondo, K., and Hamada, K., 1969, A contractile protein from leukocytes. Its extraction and some of its properties, Biochim. Biophys. Acta 181: 191–200.Google Scholar
  57. Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., and Senda, N., 1972, A contractile protein possessing Ca2+-sensitivity (natural actomyosin) from leukocytes, Biochim. Biophys. Acta 256: 565–576.CrossRefGoogle Scholar
  58. Smith, A. D., DePotter, W. P., Moerman, E. J., and De Schaedryver, A. F., 1970, Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve, Tissue Cell 2: 547–568.CrossRefGoogle Scholar
  59. Sorimachi, M., Oesch, F., and Thoenen, H., 1973, Effects of colchicine and cytochalasin B on the release of 3H-norepinephrine from guinea-pig atria evoked by high potassium, nicotine and tyramine, Naunyn-Schmiedeberg’s Arch. Pharmakol. 276: 1–12.CrossRefGoogle Scholar
  60. Spudich, J. A., 1973, Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symp. Quant. Biol. XXXVII: 585–593.Google Scholar
  61. Spudich, J. A., and Lin, S., 1972, Cytochalasin B, its interaction with actin and actomyosin from muscle, Proc. Natl Acad. Sci. U.S.A. 69: 442–446.CrossRefGoogle Scholar
  62. Stewart, J. M., and Levy, H. M., 1970, The role of the calcium-troponin-tropomyosin complex in the activation of contraction, J. Biol. Chem. 245: 5764–5772.Google Scholar
  63. Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphonuclear leukocytes, J. Biol Chem. 248: 8288–8294.Google Scholar
  64. Szent-Gyorgi, A. G., 1951a, The reversible depolymerization of actin by potassium iodide, Arch. Biochem. Biophys. 31: 97–103.CrossRefGoogle Scholar
  65. Szent-Gyorgyi, A. G., 1951b, A new method for the preparation of actin, J. Biol Chem. 192: 361–369.Google Scholar
  66. Szent-Gyorgyi, A., 1951, “Chemistry of Muscle Contraction,” p. 34, Academic Press, New York.Google Scholar
  67. Tatsumi, N., Shibata, N., Okamura, J., Takeuchi, K., and Senda, N., 1973, Actin and myosin from leukocytes, Biochim. Biophys. Acta 305: 433–444.CrossRefGoogle Scholar
  68. Taylor, E. W., 1972, Chemistry of muscle contraction, Rev. Biochem. 41: 577–616.CrossRefGoogle Scholar
  69. The mechanism of muscle contraction, 1973, “Symposia on Quantitative Biology,” Vol. XXXVII, The Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  70. Thoa, N. B., Wooten, G. F., Axelrod, J., and Kopin, I. J., 1972, Inhibition of release of dopamine-β-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin B, Proc. Natl Acad. Sci. U.S.A. 69: 520–522.CrossRefGoogle Scholar
  71. Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol Chem. 236: 3198–3202.Google Scholar
  72. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylaminde gel electrophoresis, J. Biol Chem. 244: 4406–4412.Google Scholar
  73. Weihing, R. R., and Korn, E. D., 1971, Acanthamoeba actin: Isolation and properties, Biochemistry 10: 590–600.CrossRefGoogle Scholar
  74. Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.CrossRefGoogle Scholar
  75. Whittaker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.CrossRefGoogle Scholar
  76. Williams, J. A., and Wolff, J., 1971, Cytochalasin B inhibits thyroid secretion, Biochem. Biophys. Res. Commun. 44: 422–425.CrossRefGoogle Scholar
  77. Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Natl Acad. Sci. U.S.A. 66: 807–814.CrossRefGoogle Scholar
  78. Wooley, D. E., 1970, Extraction of an actomyosin-like protein from amoebae of Dictyostelium discoideum, J. Cell Physiol 76: 185–190.CrossRefGoogle Scholar
  79. Wooley, D. E., 1972, An actin-like protein from amoebae of Dictyostelium discoideum, Arch. Biochem. Biophys. 150: 519–530.CrossRefGoogle Scholar
  80. Yang, Y., and Perdue, J. R., 1972, Contractile proteins of cultured cells, J. Biol Chem. 247: 4503–4509.Google Scholar
  81. Young, M., 1969, Molecular basis of muscle contraction. Annu. Rev. Biochem. 38: 913–950.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • S. Berl
    • 1
  • W. J. Nicklas
    • 1
  1. 1.Department of NeurologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations