Evaporation from Solids

  • Gerd M. Rosenblatt


Volatilization of solids in the broad sense includes any process which results in conversion of matter from the solid state to the vapor phase. Volatilization may occur in two principal ways. Solid may be converted into vapor by (1) evaporation, in which case the gaseous molecules formed consist entirely of atoms supplied by the solid, or (2) a chemical reaction between the solid and another species to form gaseous products. In the latter case the other species may be a gas, another solid, or a liquid. The additional species may be present inadvertently as part of the environmental gas or of the container material, or may be introduced purposely. Volatilization reactions of this second type are governed by considerations described in other chapters of this treatise (cf. Chapters 4, 5, 8, and 9 of Volume 4). However, although more complex, the reactions of solids with other phases, particularly with gases, to form volatile products are related to, and in some respects similar. to, direct evaporation of gases from solids. Gas-surface volatilization reactions are complicated by the need for interaction, adsorption, and reaction of the incoming gas with the solid, as described in Chapter 5 of Volume 6A and Chapter 8 of Volume 4. However, following, and perhaps during, formation of the product molecules the molecular processes are similar to those occurring during evaporation, as described in this chapter.


Evaporation Rate Vapor Molecule Knudsen Cell Ledge Spacing Vaporization Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Belton and W. C. Worrell (eds.), Heterogeneous Kinetics at Elevated Temperatures, Plenum Press, New York (1970).Google Scholar
  2. 2.
    W. G. Courtney, J. Am. Rocket Soc. 31, 751 (1961).Google Scholar
  3. 3.
    S. Dushman and J. M. Lafferty, Scientific Foundations of Vacuum Technique, 2nd ed., John Wiley, New York (1962).Google Scholar
  4. 4.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation, Vol. 11 of Progr. Mat. Sci., Pergamon, New York (1963).Google Scholar
  5. 5.
    O. Knacke and I. N. Stranski, Progr. Metal Phys. 6, 181 (1956).CrossRefGoogle Scholar
  6. 6.
    J. L. Margrave (ed.), The Characterization of High Temperature Vapors, John Wiley, New York (1967).Google Scholar
  7. 7.
    B. Paul, J. Am. Rocket Soc. 32, 1321 (1962).Google Scholar
  8. 8.
    G. M. Pound, J. Phys. Chem. Ref. Data 1, 135 (1972).CrossRefGoogle Scholar
  9. 9.
    W. D. Robertson and N. A. Gjostein (eds.), Metal Surfaces: Structure, Energetics, and Kinetics, Amer. Soc. Metals, Cleveland, Ohio (1963).Google Scholar
  10. 10.
    E. Rutner, P. Goldfinger, and J. P. Hirth (eds.), Condensation and Evaporation of Solids, Gordon and Breach, New York (1964).Google Scholar
  11. 11.
    A. W. Searcy, D. W. Ragone, and U. Colombo (eds.), Chemical and Mechanical Behavior of Inorganic Materials, Interscience, New York (1970).Google Scholar
  12. 12.
    G. A. Somorjai and J. E. Lester, Progr. Solid State Chem. 4, 1 (1967).CrossRefGoogle Scholar
  13. 13.
    G. A. Somorjai, in Proc. Third Int. Symp. on High Temp. Technology, Int. Union of Pure and Appl. Chem., London (1969), p. 73.Google Scholar
  14. 14.
    G. A. Somorjai (ed.), The Structure and Chemistry of Solid Surfaces, John Wiley, New York (1969).Google Scholar
  15. 15.
    J. B. Arthur, in Ref. 14.Google Scholar
  16. 16.
    M. Balooch, A. E. Dabiri, and R. E. Stickney, Surface Sci. 30, 483 (1972).CrossRefGoogle Scholar
  17. 17.
    L. W. Barr, J. Chem. Phys. 51, 1683 (1969).CrossRefGoogle Scholar
  18. 18.
    H. Bethge, J. Phys. Chem. Solids (Suppl.) 1, 623 (1967).Google Scholar
  19. 19.
    R. S. Bradley and P. Volans, Proc. Roy. Soc. (London) A217, 508, 524 (1953).Google Scholar
  20. 20.
    L. Brewer and J. S. Kane, J. Phys. Chem. 59, 105 (1955).CrossRefGoogle Scholar
  21. 21.
    S. B. Brumbach and G. M. Rosenblatt, Surface Sci. 29, 555 (1972).CrossRefGoogle Scholar
  22. 22.
    J. Budke, J. Appl. Phys. 40, 641 (1969).CrossRefGoogle Scholar
  23. 23.
    G. Burrows, J. Appl. Chem. 7, 375 (1957).CrossRefGoogle Scholar
  24. 24.
    N. Cabrera and R. V. Coleman, in The Art and Science of Growing Crystals ( J. J. Gilman, ed.), John Wiley, New York (1963), p. 3.Google Scholar
  25. 25.
    N. Cabrera and M. M. Levine, Phil. Mag. (8)1, 450 (1956).Google Scholar
  26. 26.
    D. Cubicciotti, J. Phys. Chem. 70, 2410 (1966).CrossRefGoogle Scholar
  27. 27.
    A. Davis and R. F. Strickland-Constable, in Ref. 10, p. 665.Google Scholar
  28. 28.
    L. H. Dreger, V. V. Dadape, and J. L. Margrave, J. Phys. Chem. 66, 1556 (1962).CrossRefGoogle Scholar
  29. 29.
    J. Drowart, in Proc. Int. School on Mass Spectrometry, Ljubljana, Yugoslavia (1969), p. 207.Google Scholar
  30. 30.
    H. Eyring, F. M. Wanlass, and E. M. Eyring, in Ref. 10, p. 3.Google Scholar
  31. 31.
    R. D. Freeman, in Ref. 6, p. 152.Google Scholar
  32. 32.
    R. T. Grimley, in Ref. 6, p. 195.Google Scholar
  33. 33.
    E. E. Hansen and Z. A. Munir, High Temp. Sci. 2, 169 (1970).Google Scholar
  34. 34.
    W. Hirschwald and I. N. Stranski, in Ref. 10, p. 59.Google Scholar
  35. 35.
    J. P. Hirth and G. M. Pound, J. Chem. Phys. 26, 1216 (1957).CrossRefGoogle Scholar
  36. 36.
    D. Howlett, J. E. Lester and G. A. Somorjai, J. Phys. Chem. 75, 4049 (1971).CrossRefGoogle Scholar
  37. 37.
    R. Jaeckel and W. Peperle, Z. Physik Chem. 217, 321 (1961).Google Scholar
  38. 38.
    T. E. Joyce and R. T. Grimley, J. Chem. Phys. 51, 409 (1969).CrossRefGoogle Scholar
  39. 39.
    S. A. Kitchener and R. F. Strickland-Constable, Proc. Roy. Soc. (London) A245, 93 (1958).Google Scholar
  40. 40.
    P. Kusch, in Ref. 10, p. 87.Google Scholar
  41. 41.
    R. B. Leonard and A. W. Searcy, J. Appl. Phys. 42, 4047 (1971).CrossRefGoogle Scholar
  42. 42.
    J. E. Lester and G. A. Somorjai, J. Chem. Phys. 49, 2940 (1968).CrossRefGoogle Scholar
  43. 43.
    R. Littlewood and E. Rideal, Trans. Faraday Soc. 52, 1598 (1956).CrossRefGoogle Scholar
  44. 44.
    L. B. Loeb, The Kinetic Theory of Gases, McGraw-Hill, New York (1934).Google Scholar
  45. 45.
    C. Y. Lou and G. A. Somorjai, J. Chem. Phys. 55, 4554 (1971).CrossRefGoogle Scholar
  46. 46.
    J. B. Mann, in Recent Developments in Mass Spectrometry ( K. Ogata and T. Hayakawa, eds.), Tokyo Univ. Press (1970), p. 814.Google Scholar
  47. 47.
    R. W. Mar and A. W. Searcy, J. Chem. Phys. 53, 3076 (1970).CrossRefGoogle Scholar
  48. 48.
    U. Merten and W. E. Bell, in Ref. 6, p. 91.Google Scholar
  49. 49.
    K. Motzfeldt, J. Phys. Chem. 59, 139 (1955).CrossRefGoogle Scholar
  50. 50.
    Z. A. Munir and J. P. Hirth, J. Appl. Phys. 41, 2697 (1970).CrossRefGoogle Scholar
  51. 51.
    Z. A. Munir and W. A. Searcy, J. Chem. Phys. 42, 4223 (1965).CrossRefGoogle Scholar
  52. 52.
    P. Nordine, Doctoral dissertation, Univ. of Kansas, Lawrence, Kansas, 1970.Google Scholar
  53. 53.
    H. Rickert, in Ref. 10, p. 201.Google Scholar
  54. 54.
    G. M. Rosenblatt, J. Electrochem. Soc. 110, 563 (1963).CrossRefGoogle Scholar
  55. 55.
    G. M. Rosenblatt, J. Phys. Chem.71, 1327 (1967).Google Scholar
  56. 56.
    G. M. Rosenblatt, M. B. Dowell, P. K. Lee, and H. R. O’Neal, in Ref. 14, Chap. 17.Google Scholar
  57. 57.
    G. M. Rosenblatt, in Ref. 1, p. 209.Google Scholar
  58. 58.
    H. Schäfer, Chemical Transport Reactions, Academic Press, New York (1963).Google Scholar
  59. 59.
    H. Schäfer and M. Trenkel, Z. Anorg. Allgem. Chem. 391. 11 (1972).CrossRefGoogle Scholar
  60. 60.
    R. C. Schoonmaker, A. Buhl, and J. Lemley, J. Phys. Chem. 69, 3455 (1965).CrossRefGoogle Scholar
  61. 61.
    G. W. Sears, J. Chem. Phys. 27, 1308 (1957).CrossRefGoogle Scholar
  62. 62.
    N. J. Sell, W. F. Marx, and J. E. Lester, High Temp. Sci. 4, 222 (1972).Google Scholar
  63. 63.
    M. N. Shetty and J. B. Taylor, J. Appl. Phys. 39, 5145 (1968).CrossRefGoogle Scholar
  64. 64.
    D. W. Short, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 57, 1381 (1972).CrossRefGoogle Scholar
  65. 65.
    W. A. Steele, The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford (1974).Google Scholar
  66. 66.
    R. E. Stickney, in Advances in Atomic and Molecular Physics, Vol. 3 (D. R. Bates, ed.), Academic Press, New York (1967), p. 143.Google Scholar
  67. 67.
    T. Surek, J. P. Hirth, and G. M. Pound, J. Crystal Growth 18, 20 (1973).CrossRefGoogle Scholar
  68. 68.
    T. Surek, G. M. Pound, and J. P. Hirth, J. Chem. Phys. 55, 5157 (1971).CrossRefGoogle Scholar
  69. 69.
    W. J. Taylor, J. Chem. Phys. 38, 779 (1963).CrossRefGoogle Scholar
  70. 70.
    G. L. Vidale, General Electric Missile and Space Vehicle Department, Technical Information Series, Report No. R60-SD-468, 1960.Google Scholar
  71. 71.
    G. Wessel, Z. Physik 130, 539 (1951).CrossRefGoogle Scholar
  72. 72.
    C. I. Whitman, J. Chem. Phys. 20, 161 (1952).CrossRefGoogle Scholar
  73. 73.
    G. Wyllie, Proc. Roy. Soc. (London) A197, 383 (1949).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • Gerd M. Rosenblatt
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations