Skip to main content

Principles of Electrochromism as Related to Display Applications

  • Chapter

Abstract

In electrochromic materials an electric current induces a persistent and reversible change in optical properties. The elementary process of coloration consists either in a valency change of one of the constituent ions or in the formation of a color center associated with a lattice defect. Both can be regarded as electrochemical processes and Smakula’s equation directly predicts the electrical charge required to achieve a given contrast. For charge neutrality reasons two species of charge carriers (electrons and ions) are needed to induce coloration. In order to make bulk electrochromism feasible, the material has to be both electronically and ionically conducting. The underlying general physical principles provide clear guidelines in materials research and cell design and will be discussed with emphasis on WO3 and solid state technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Seitz, Rev. Modern Phys. 26 (1954) 7

    Article  ADS  Google Scholar 

  2. I. F. Chang, B. L Gilbert and T. I. Sun (J. Electrochem. Soc. 122 (1975) 955) have coined the work “electrochemichromism” which is more exact than the historical “electrochromism”

    Article  Google Scholar 

  3. S. K. Deb, Phil. Mag. 27 (1973) 801

    Article  ADS  Google Scholar 

  4. S. K. Deb and J. A. Chopvorian, J. Appl. Phys. 37 (1966) 4818

    Article  ADS  Google Scholar 

  5. S. K. Deb, Appl. Optics Suppl. 3 (1969) 192

    Google Scholar 

  6. B. W. Fanghnan, R. S. Crandall and P. M. Heyman, RCA Review 36 (March 1975) 177

    Google Scholar 

  7. C. J. Schoot, J. J Ponjee, H. T. van Dam, R. A. van Doom and P. R. Bolwjis, Appl. Phys. Lett. 23 (1973) 64

    Article  ADS  Google Scholar 

  8. H. T. van Dam and J. J. Ponjee, J. Electrochem. Soc. 121 (1974) 1555

    Article  Google Scholar 

  9. A. Smakula, Z. Phys. 59 (1930) 603

    Article  ADS  Google Scholar 

  10. S. K. Deb and R. F. Shaw, US Patent 3 521 941

    Google Scholar 

  11. W. van Gool (ed.), ‘Fast Ion Transport in Solids, Solid State Batteries and Devices’, North Holland, Amsterdam (1973)

    Google Scholar 

  12. D. L. Dexter, in F. Seitz and D. Turnbull (eds.), ‘Solid State Physics’ 6 (1958) 353

    Google Scholar 

  13. M. B. Robin and P Day, Adv. Inorg. Chem. and Radiochem. 10 (1967) 247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Zeller, H.R. (1976). Principles of Electrochromism as Related to Display Applications. In: Kmetz, A.R., von Willisen, F.K. (eds) Nonemissive Electrooptic Displays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4289-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4289-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4291-5

  • Online ISBN: 978-1-4613-4289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics