Skip to main content

Virtual Phonon Exchange in Glasses

  • Chapter
Phonon Scattering in Solids
  • 28 Accesses

Abstract

The phonon field has long been recognized to provide an efficient coupling of particles or excitations in crystals. The most famous example is the case of superconductivity where a pair of electrons is bound by virtual exchange of phonons. The same mechanism has also been invoked in the case of paramagnetic impurities in crystals (1). However because of the small value of the coupling constant of each spin with the lattice even for non Kramers ions, this mechanism yields a negligible contribution to the linewidth measured in E.P.R. (2). On the contrary, in the case of helium 3 or 4 impurities in helium 4 or 3 single crystals, the coupling between the impurities via the phonon field seems to be rather strong and probably contributes to the anomalous value of the diffusion coefficient of impurities, as observed in NMR (3). One might also ask whether the anomalous value at low temperatures of the dielectric constant of KC1 crystals containing molecular impurities (OH-) is not due to the appearance of a collective effect ordered by the phonon field (4).

Associated with the Centre National de la Recherche Scientifique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D McMahon and R Silsbee, Phys Rev A135 (1964) 91.

    Article  MathSciNet  ADS  Google Scholar 

  2. R Orbach and M Tachiki, Phys Rev 158 (1967) 524.

    Article  ADS  Google Scholar 

  3. W Huang, H Golberg, M T Takemori and R A Guyer, Phys Rev Lett 33 (1974) 283.

    Article  ADS  Google Scholar 

  4. F Luty, J Physique Colloques 28 (1967) C4–120.

    Google Scholar 

  5. P W Anderson, B Halperin and C Varma, Phil Mag 25 (1972) 1.

    Article  ADS  MATH  Google Scholar 

  6. W A Phillips, J Low Temp Phys 7, (1972) 351.

    Article  ADS  Google Scholar 

  7. R C Zeller and R O Pohl, Phys Rev B4 (1971) 2029.

    Article  ADS  Google Scholar 

  8. J C Lasjaunias and R Maynard, J Non Cryst Solids 6 (1971) 101.

    Article  ADS  Google Scholar 

  9. W Arnold, S Hunklinger, S Stein and K Dransfeld, J Non Cryst Solids 14 (1974) 192.

    Article  ADS  Google Scholar 

  10. B Golding, J Graebner, B Halperin and R Schutz, Phys Rev Lett 30 (1973) 223.

    Article  ADS  Google Scholar 

  11. J H Van Vleck, Phys Rev 74 (1948) 1168.

    Article  ADS  MATH  Google Scholar 

  12. J Joffrin and A Levelut, Journal de Physique 36 (1975) 811.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Joffrin, J., Levelut, A. (1976). Virtual Phonon Exchange in Glasses. In: Challis, L.J., Rampton, V.W., Wyatt, A.F.G. (eds) Phonon Scattering in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4271-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4271-7_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4273-1

  • Online ISBN: 978-1-4613-4271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics