Phonon Scattering in Amorphous Solids

  • Robert O. Pohl


The thermal conductivity of all amorphous dielectric solids shows a most remarkable uniformity which appears to be insensitive to the host and to chemical impurities. This is demonstrated in Fig. 1 in which the conductivities of all amorphous dielectric solids measured to-date are summarized (1,2). To within less than a factor of 10, the conductivity Λ depends solely on the temperature and not on the material, it has a plateau in the temperature region around 10K, and below 1K approaches a power low Λ ∝Tδ where δ falls into the range 1.8 < δ < 2.0. (Note in particular the recent data obtained by Lasjaunias et al (2) extending the temperature range in which this law appears to hold to 0.025K, with δ=1.95). In this lecture, we want to review some of the studies undertaken to understand this remarkable fact.


Phonon Scattering Debye Model Amorphous Solid Tunneling State Ultrasonic Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Stephens, Phys. Rev. B8, 2896 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    J. C. Lasjaunias, A. Ravex, M. Vandorpe, and S. Hunklinger, to be published.Google Scholar
  3. 3.
    W. F. Love, Phys. Rev. Lett. 31, 827 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    R. O. Pohl, W. F. Love, and R. B. Stephens, Proc. of the 5th Intern. Conf. on Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig, Taylor and Francis, London 1974, page 1121.Google Scholar
  5. 5.
    M. P. Zaitlin and A. C. Anderson, Phys. Rev. Lett. 33, 1158 (1974); M. P. Zaitlin and A. C. Anderson, and M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, to be published.Google Scholar
  6. 6.
    W. Heinicke, G. Winterling, K. Dransfeld, J. Acoust. Soc. Am. 49, 954 (1971).Google Scholar
  7. 7.
    W. Arnold, S. Hunklinger, S. Stein, and K. Dransfeld, J. Noncryst Solids 14 192 (1974), and B. Golding, J. E. Graebner, and B. I. Halperin, Phys. Rev. Lett. 30, 223 (1973).Google Scholar
  8. 8.
    S. Hunklinger and L. Piche’, to be published.Google Scholar
  9. 9.
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972), and P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).Google Scholar
  10. 10.
    J. Jäckle, L. Piche’, W. Arnold, and S. Hunklinger, to be published.Google Scholar
  11. 11.
    D. Ng and R. J. Sladek, same as ref. 4, page. 1173, and to be published.Google Scholar
  12. 12.
    W. Arnold and S. Hunklinger, Berh. Deutsche Physik. Ges. (VI) 10, Münster 1975, page 645.Google Scholar
  13. 13.
    W. Arnold and S. Hunklinger, to be published.Google Scholar
  14. 14.
    See R. B. Stephens, Cornell Materials Science Center Report No. 2474, to be published.Google Scholar
  15. 15.
    J. C. Lasjaunias, D. Thoulouze, and F. Pernod, Solid State Comm. 14, 957 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    W. M. Goubau and R. H. Tait, Phys. Rev. Lett. 34, 1220 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    J. Jäckle, Z. Physik 257, 212 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    S. Hunklinger, M.v. Schickfuss, W. Arnold, L. Piche’, and K. Dransfeld, to be published.Google Scholar
  19. 19.
    K. K. Mon and A. J. Sievers, to be published.Google Scholar
  20. 20.
    R. B. Stephen, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Robert O. Pohl
    • 1
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations