Quarks and Strings on a Lattice

  • Kenneth G. Wilson
Part of the The Subnuclear Series book series (SUS, volume 13)


Three lectures describe the lattice version of the color gauge theory of quarks. The string interpretation of the theory is emphasized. The strong coupling expansion is defined by a set of Feynman rules. The dominant diagrams are identified. The result is that for strong quark-gluon coupling, the lattice spacing is about 1/5 x 10−13cm, the nucleon has a mass of 1720 MeV/c2 while the N* mass is 1750 MeV/c. The π and ρ masses are fitted to experiment. The relativistic limit is explained for free field theories on a lattice. For the colored quark theory only a few aspects of the relativistic continuum limit are discussed. It is shown how short wavelength string fluctuations are suppressed. It is shown that the classical limit of the lattice theory is the relativistic continuum color gauge theory.


Gauge Theory Lattice Spacing Continuum Limit Gauge Field Lattice Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Feynman, The Character of Physical Law (M.I.T. Press, Cambridge, 1967), p. 171.Google Scholar
  2. 2.
    O. W. Greenberg, Phys. Rev. Lett. 13 598 (1964). W. A. Bardeen, H. Fritzsch, and M. Gell-Mann in Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto (Wiley, New York, 1973).ADSCrossRefGoogle Scholar
  3. 3.
    See, e.g., H. D. Politzer, Phys. Repts. 14C, 130 (1974).Google Scholar
  4. 4.
    K. G. Wilson, Phys. Rev. D10, 2445 (1974). R. Balian, J. Drouffe, and C. Itzykson, Phys. Rev. D10, 3376 (1974); ibid 11, 2098, 2104 (1975). J. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975) C. Korthals Alles, Proceedings of the Marseille Conference on Gauge Theories (1974) K. G. Wilson, ibid., V. Baluni and J. Willemsen, M.I.T. preprint A. A. Migdal, Cernogolovka preprint K. G. Wilson, Phys. Repts. (to be published) T. Banks, L. Susskind, and J. Kogut, Cornell preprint CLNS-318ADSGoogle Scholar
  5. 5.
    See, for example, K. Wilson, Revs. Mod. Phys. (to be published); T. Bell and K. G. Wilson, Phys. Rev. B11, 3431 (1975; and L. Kadanoff and A. Houghton, Brown preprint. The last reference reports a method of solution for the φ4 field theory in 4 space-time dimensions.Google Scholar
  6. 6.
    K. G. Wilson and J. B. Kogut, Phys. Rept. 12C, 75 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    J. Willemsen, Phys. Rev. D8, 4457 (1973).ADSGoogle Scholar
  8. 8.
    See, e.g., E. Abers and B. W. Lee, Phys. Repts. 9C, 1 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    D. Jasnow and M. Wortis, Phys. Rev. 176, 739 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Kenneth G. Wilson
    • 1
  1. 1.Laboratory of Nuclear StudiesCornell UniversityIthacaUSA

Personalised recommendations