Structure and Physical Properties of an Amorphous Cu57Zr43 Alloy

  • T. Mizoguchi
  • S. von Molnar
  • G. S. CargillIII
  • T. Kudo
  • N. Shiotani
  • H. Sekizawa

Abstract

Some structural, thermal, and electronic properties of amorphous Cu-Zr alloys have been investigated by x-ray scattering, specific heat, positron annihilation, and electrical resistivity measurements. X-ray scattering patterns for sputtered and for rapidly-quenched-from-the-liquid Cu-Zr alloys of ∿40 at. % Zr are nearly identical, indicating that the atomic scale structure of these alloys is not grossly affected by preparation method. Rapidly quenched Cu57Zr43 has a Debye temperature of ∿200°K, which is 13% lower than that found for the crystalline form of this alloy, presumed to be a mixture of Cu3Zr2 and CuZr, although the electronic specific heat γ = 3 x 10−3 J/mole °K2 is nearly the same for both forms of the alloy and is quite close to that of crystalline Zr. The electron momentum distributions for amorphous and for crystalline Cu57Zr43 are very similar, from positron annihilation experiments, and fall between those of polycrystalline Cu and of polycrystalline Zr, lying somewhat closer to the latter. The electrical resistivity of the amorphous binary alloy increases slightly with decreasing temperature, but the resistivity irreversibly increases by about 3% at ∿450°C when the alloy undergoes crystallization.

Keywords

Crystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Waseda and T. Masumoto, Z. Physik B21, 235 (1975).ADSGoogle Scholar
  2. 2.
    M. Hansen, Constitution of Binary Alloys, Second Edition (McGraw-Hill, New York, 1958) p. 656.Google Scholar
  3. 3.
    G. Ahlers, Rev. Sci. Inst. 37, 477 (1966).CrossRefADSGoogle Scholar
  4. 4.
    N. M. Wolcott, Phil. Mag. VIII, 2, 1246 (1957).ADSGoogle Scholar
  5. 5.
    H. S. Chen and W. H. Haemmerle, J. Non-Cryst. Solids 11, 161 (1972).CrossRefADSGoogle Scholar
  6. 6.
    B. Golding, B. G. Bagley and F. S. L. Hsu, Phys. Rev. Letters 29, 68 (1972).CrossRefADSGoogle Scholar
  7. 7.
    D. Weaire, M. F. Ashby, J. Logan and M. J. Weins, Acta Met. 19, 779 (1971).CrossRefGoogle Scholar
  8. 8.
    S. Tanigawa, K. Hinode and M. Doyama, private communication.Google Scholar
  9. 9.
    S. Y. Chuang, S. J. Tao, and H. S. Chen, J. Phys. F 5, 1681 (1975).CrossRefADSGoogle Scholar
  10. 10.
    B. Rosenfeld, Acta Physica Polonica 31, 197 (1967).Google Scholar
  11. 11.
    S. R. Nagel and J. Tauc, Phys. Rev. Letters 35, 380 (1975).CrossRefADSGoogle Scholar
  12. 12.
    T. Mizoguchi and T. Kudo, AIP Conf. Proc. 29, 167 (1976).CrossRefADSGoogle Scholar
  13. 13.
    F. R. Szofran, G. R. Gruzalski, J. W. Weymouth, D. J. Sellmyer, and B. C. Giessen, to be published in Phys. Rev. B (1976).Google Scholar
  14. 14.
    R. Hilsch and W. Martienssen, Nuovo cimento Suppl. 7, 480 (1958).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. Mizoguchi
    • 1
    • 4
  • S. von Molnar
    • 1
  • G. S. CargillIII
    • 1
  • T. Kudo
    • 2
  • N. Shiotani
    • 3
  • H. Sekizawa
    • 3
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.Department of PhysicsGakushuin UniversityMejiro, TokyoJapan
  3. 3.The Institute of Physical and Chemical ResearchHirosawa, Wako-shi, SaitamaJapan
  4. 4.Faculty of ScienceGakushuin UniversityMejiro, TokyoJapan

Personalised recommendations