31P Nuclear Magnetic Resonance Study in the Metallic Glass Systems (NiyPt1−y)75P25 and (Ni0.50Pd0.50)100−xPx

  • William A. Hines
  • Lawrence T. Kabacoff
  • Ryusuke Hasegawa
  • Pol Duwez


Recently, considerable attention has been focused on a class of materials known as metallic glasses.1 This is due both to a desire for a re-examination of some heretofore fundamental concepts of solids as well as a possibility for a variety of technological applications. Metallic glasses have the general form TM100−xMx, where TM is a transition metal (or combination of transition metals) such as Fe, Ni, Pd or Pt and M is a high valence metalloid such as B, C, Si or P. For the most part, such alloys are prepared by rapid quenching from the liquid state and possess compositions typically ranging from x = 15 to 28 for the metalloid.


Metallic Glass Knight Shift Transition Metal Atom Nuclear Magnetic Reso Dense Random Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Gilman, Physics Today 28, No. 5, 46 (May, 1976).CrossRefGoogle Scholar
  2. 2.
    S. R. Nagel and J. Tauc, Phys. Rev. Letters 35, 380 (1975).CrossRefADSGoogle Scholar
  3. 3.
    B. G. Bagley, H. S. Chen and D. Turnbull, D. Mater. Res. Bull. 3, 159 (1968).CrossRefGoogle Scholar
  4. 4.
    D. E. Polk, Scripta Metallurgica 4, 117 (1970).CrossRefGoogle Scholar
  5. 5.
    J. D. Bernal, Nature 185, 68 (1960).CrossRefADSGoogle Scholar
  6. 6.
    R. Hasegawa and C. C. Tsuei, Phys. Rev. B2, 1631 (1970).ADSGoogle Scholar
  7. 7.
    R. Hasegawa, W. A. Hines, L. T. Kabacoff and Pol Duwez, submitted to Solid State Commun.Google Scholar
  8. 8.
    Pol Duwez, in Techniques of Metals Research, edited by R. F. Bunshah (Interscience, New York, 1968), Vol. I., part 1, Chap. 7, p. 347.Google Scholar
  9. 9.
    L. E. Drain, Metallurgical Reviews 12, 195 (1967).Google Scholar
  10. 10.
    A. Narath, J. Appl. Phys. 39, 553 (1968).CrossRefADSGoogle Scholar
  11. 11.
    A. M. Clogston, A. C. Gossard, V. Jaccarino and Y. Yafet, Phys. Rev. Letters 9, 262 (1962).CrossRefADSGoogle Scholar
  12. 12.
    H. S. Chen and B. K. Park, Acta Met. 21, 395 (1973).CrossRefGoogle Scholar
  13. 13.
    S. R. Nagel, G. B. Fisher, J. Tauc and B. G. Bagley, Bull. Am. Phys. Soc. 20, 374 (1975).Google Scholar
  14. 14.
    A. K. Sinha and P. Duwez, J. Phys. Chem. Solids 32, 267 (1971).CrossRefADSGoogle Scholar
  15. 15.
    H. S. Chen, Acta Met. 22, 1505 (1974).CrossRefGoogle Scholar
  16. 16.
    A. K. Sinha, Phys. Rev. B2, 4541 (1970).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • William A. Hines
    • 1
  • Lawrence T. Kabacoff
    • 1
  • Ryusuke Hasegawa
    • 2
  • Pol Duwez
    • 3
  1. 1.Univ. of Conn.StorrsUSA
  2. 2.Allied Chemical Corp.MorristownUSA
  3. 3.Calif. Inst. of Tech.PasadenaUSA

Personalised recommendations