Photomovement in Microorganisms: Strategies of Response

  • Mary Ella Feinleib


Photomovement strategy in microorganisms displays a marvelous diversity of evolutionary solutions to the same problem: how to move into an optimally-illuminated region of the environment. The aim of the present lecture is to describe some of these response strategies and to point out key questions left open for future investigation. The response types fall into three major categories, defined by Professor Haupt in the preceding lecture: photokinesis, phobic response (or photophobism) and phototaxis.


Stimulus Light Single Flash Negative Phototaxis Turn Response Phototactic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nultsch, W. 1975. Phototaxis and photokinesis. In: “Primitive Sensory and Communications Systems: the Taxes and Tropisms of Micro-organisms and Cells” ( M.J. Carlisle, ed.) London-New York, Academic Press: 29–90.Google Scholar
  2. 2.
    Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktionen auf Lichtreize. Jb. wiss. Bot. 56: 529–584.Google Scholar
  3. 3.
    Pfenning, N. 1968. Thiospirillum jenense. Lokomotion und phototaktisches Verhalten. Inst, für den wissentschaftlichen Film. Göttingen.Google Scholar
  4. 4.
    Nultsch, W. 1970. Photomotion in microorganisms and its interaction with photosynthesis. In: “Photobiology of Micro-organisms.” ( P. Halldal, ed.) London, Wiley: 213–252.Google Scholar
  5. 5.
    Huth, K. 1970. Bewegung und Orientierung bei Volvox aureus. I. Mechanismus der phototaktischen Reaktion. Z. Pflanzenphysiol. 62: 436–450.Google Scholar
  6. 6.
    Häder, D-P. 1976. These proceedings.Google Scholar
  7. 7.
    Berg, H.C. and R.A. Anderson. 1973. Bacteria swim by rotating their flagellar filaments. Nature. 245: 380–382.CrossRefGoogle Scholar
  8. 8.
    Piccinni, E. and P. Qmodeo. 1975. Photoreceptors and phototactic programs in protista. Boll Zool. 42: 57–79.CrossRefGoogle Scholar
  9. 9.
    Jahn, T. L. and E.C. Bovee. 1972. Locomotive and motile responses in Euglena. In: “The biology of Euglena” ( E.E. Buefcow, ed.). New York-London, Acad. Press: 45–108.Google Scholar
  10. 10.
    Nultsch, W. (personal communication.)Google Scholar
  11. 11.
    Neuscheler, W. 1967. Bewegung und Orientierung bei Micrasterias denticulata. Breb. im Licht. I. Zur Bewegungs — und Orientierungsweise. Z. Pflanzenphysiol. 57 (1): 46–59.Google Scholar
  12. 12.
    Jennings, H.S. 1906. “Behavior of the Lower Organisms.” New York, Columbia University Press.CrossRefGoogle Scholar
  13. 13.
    Mast, S.O. 1911. “Light and the Behavior of Organisms.” New York, Wiley.Google Scholar
  14. 14.
    Haupt, W. 1959. Die Phototaxis der Algen. In: “Handbuch der Pflanzenphysiologie.” XVII (1). ( W. Ruhland, ed.) Berlin- Heidelberg-New York. Springer Verlag.Google Scholar
  15. 15.
    Schietz, K. 1976. Phototaxis bei Volvox — Pigmentsysteme der Lichtrichtungsperzeption. Z. Pflanzenphysiol. 77: 189–211.Google Scholar
  16. 16.
    Hand, W.G. and J. Schmidt. 1975. Phototactic orientation by the marine dinoflagellate Gyrodinium dorsum Kofoid. II. Flagellar activity and phototactic response. J. Protozoal. 22: 494–498.Google Scholar
  17. 17.
    Diehn, B. 1973. Phototaxis and sensory transduction in Euglena. Science. 181: 1009–1015.CrossRefGoogle Scholar
  18. 18.
    Boscov, J.S. 1974. Responses of Chlamydomonas to single flashes of light. M.S. dissertation. Tufts University. Medford, Mass., U.S.A.Google Scholar
  19. 19.
    Feinleib, M.E. 1975. Phototactic response of Chlamydomonas to flashes of light. I. Response of cell populations. Photochem. Photobiol. 21: 351–354.CrossRefGoogle Scholar
  20. 20.
    Ludwig, W. 1930. Untersuchungen über die Schraubenbahnen niederer Organismen. Z. Vergleich. Physiol. 9: 734–801.CrossRefGoogle Scholar
  21. 21.
    Ringo, D.L. 1967. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell. Bio. 33: 543–571.CrossRefGoogle Scholar
  22. 22.
    Hartshorne, J.N. 1953. The function of the eyespot in Chlamydomonas. New Phytol. 52. 292–297.CrossRefGoogle Scholar
  23. 23.
    Smith, R.D., G.W. Martinek and W.T. Ebersold. 1975. Linkage of six genes in Chlamydomonas reinhardtii and the construction of linkage test strains. J. Bacteriol. 124: 1615–1617.Google Scholar
  24. 24.
    Feinleib, M.E. and G.M. Curry. 1971a. The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol. Plant. 25: 346–352.CrossRefGoogle Scholar
  25. 25.
    Feinleib, M.E. and G.M. Curry. 1971b. The nature of the photoreceptor in phototaxis. In: “Handbook of Sensory Physiology. I. Principles of Receptor Physiology” ( W. Loewenstein, ed.) Berlin, Springer Verlag.Google Scholar
  26. 26.
    Walne, P.L. and H.J. Arnott. 1967. The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos. Planta. 77. 325–353.CrossRefGoogle Scholar
  27. 27.
    Famintzin, A. 1967. Die Wirkung des Lichtes auf Algen und einige ihnen nahe verwandte Organismen. Jb. wiss. Bot. 6: 1–48.Google Scholar
  28. 28.
    Buder, J. 1917. Zur Kenntnis der phototaktischen Richtungsbewegungen. Jb. wiss. Bot. 58: 105–220.Google Scholar
  29. 29.
    Strasburger, E. 1878. Wirkung des Lichtes und der Wärme auf Schwärmsporen. Jen. Zeitschr. f. Naturwiss. 12.Google Scholar
  30. 30.
    Halldal, P. 1960. Action spectra of induced phototactic response changes in Platymonas. Physiol. Plant. 13; 726–735.CrossRefGoogle Scholar
  31. 31.
    Feinleib, M.E. 1965. Studies on phototaxis in Chlamydomonas reinhardtii. Ph.D. dissertation. Harvard University, Cambridge, Mass., U.S.A.Google Scholar
  32. 32.
    Nultsch, W. 1975. Effect of external factors on phototaxis of Chlamydomonas reinhardtii. I. Light. Arch. Mikrobiol. 179: 215–216.Google Scholar
  33. 33.
    Halldal, P. 1957. Importance of calcium and magnesium ions in phototaxis of motile green algae. Nature. 179: 215–216.CrossRefGoogle Scholar
  34. 34.
    Halldal, P. 1959. Factors affecting light response in phototactic algae. Physiol. Plant. 12: 742–752.CrossRefGoogle Scholar
  35. 35.
    Mayer, A.M. 1968. Chlamydomonas; adaptation phenomena in phototaxis. Nature. 217; 875–876.CrossRefGoogle Scholar
  36. 36.
    Nultsch, W., G. Throm and I.v. Rimscha. 1971. Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur. Arch. Mikrobiol. 80. 351–360.CrossRefGoogle Scholar
  37. 37.
    Stavis, R. 1974a. Phototaxis in Chlamydomonas: a sensory receptor system. Ph.D. dissertation. Yeshiva University, New York, N.Y., U.S.A.Google Scholar
  38. 38.
    Stavis, R. 1974b. The effect of azide on phototaxis in Chlamydomonas reinhardtii. Proc. Nat. Acad. Sci. U.S.A. 71 (5): 1824–1827.CrossRefGoogle Scholar
  39. 39.
    Riedl, G. 1976. Zulassungsarbeit, Botan. Inst, der Universität Erlangen-Nürnberg. In preparation.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Mary Ella Feinleib
    • 1
  1. 1.Biology Dept.Tufts UniversityMedfordUSA

Personalised recommendations