Advertisement

Intramacromolecular Micelles

  • Ulrich P. Strauss

Abstract

Polyelectrolytes with hydrophobic side chains may under appropriate conditions exhibit behavior typical of soap micelles. They may solubilize organic molecules normally insoluble in water and assume conformations distinctly more compact than those attainable by ordinary polymer molecules in solution. Studies on the physical chemical properties of such hydrophobic polyelectrolytes will be reviewed with special emphasis on the relevance of the findings to analogous properties of ordinary micelles. Topics to be treated include the effects of electrical charge and hydrophobic group size of the polyelectrolytes as well as general and specific effects of added small ions and solubilizates on the conformation and intramolecular interactions of the macromolecules.

Keywords

Critical Micelle Concentration Vinyl Ether Maleic Anhydride Sodium Oleate Hydrophobic Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.P. Strauss and E.G. Jackson, J. Polymer Sci., 6, 649 (1951).CrossRefGoogle Scholar
  2. 2.
    U.P. Strauss, S.J. Assony, E.G. Jackson and J.H. Layton, J. Polymer Sci., 9, 509 (1952).CrossRefGoogle Scholar
  3. 3.
    P. Dubin and U.P. Strauss, J. Phys. Chem., 71, 2757 (1967).CrossRefGoogle Scholar
  4. 4.
    U.P. Strauss and N.L. Gershfeld, J. Phys. Chem., 58, 747 (1954).CrossRefGoogle Scholar
  5. 5.
    U.P. Strauss, N.L. Gershfeld and E.H. Crook, J. Phys. Chem., 60, 577 (1956).CrossRefGoogle Scholar
  6. 6.
    U.P. Strauss and B.L. Williams, J. Phys. Chem., 65, 1390 (1961).CrossRefGoogle Scholar
  7. 7.
    D. Woerman and F.T. Wall, J. Phys. Chem., 64, 581 (1960).CrossRefGoogle Scholar
  8. 8.
    H. Inoue, Kolloid Z., 195, 102 (1964).CrossRefGoogle Scholar
  9. 9.
    E.G. Jackson and U.P. Strauss, J. Polymer Sci., 7, 473 (1951).CrossRefGoogle Scholar
  10. 10.
    L.H. Layton, E.G. Jackson and U.P. Strauss, J. Polymer Sci., 9, 295 (1952).CrossRefGoogle Scholar
  11. 11.
    U.P. Strauss and L.H. Layton, J. Phys. Chem., 57, 352 (1953).CrossRefGoogle Scholar
  12. 12.
    A. Hahne, Z. dtsch. 61 u. Fettind., 45, 245 (1925).Google Scholar
  13. 13.
    H.E. Jorgensen and U.P. Strauss, J. Phys. Chem., 65, 1873 (1961).CrossRefGoogle Scholar
  14. 14.
    K. Ito, H. Ono and Y. Yamashita, J. Colloid Sci., 19, 28 (1964).CrossRefGoogle Scholar
  15. 15.
    R. Varoqui and U.P. Strauss, J. Phys. Chem., 72, 2507 (1968).CrossRefGoogle Scholar
  16. 16.
    P.L. Dubin and U.P. Strauss, “Hypercoiling in Hydrophobic Polyacids” in “Polyelectrolytes and Their Applications”, A. Rembaum and E. Sélegny, Editors, pp. 3–13, D. Reidel Publishing Co., Dordrecht, Holland.Google Scholar
  17. 17.
    P.L. Dubin and U.P. Strauss, J. Phys. Chem., 74, 2842 (1970).CrossRefGoogle Scholar
  18. 18.
    A.J. Begala and U.P. Strauss, J. Phys. Chem., 76, 254 (1972).CrossRefGoogle Scholar
  19. 19.
    U.P. Strauss and G. Vesnaver, J. Phys. Chem., 79, 2426 (1975).CrossRefGoogle Scholar
  20. 20.
    P. Dubin and U.P. Strauss, J. Phys. Chem., 77, 1427 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ulrich P. Strauss
    • 1
  1. 1.Wright and Rieman Laboratories RutgersThe State University of New JerseyNew BrunswickUSA

Personalised recommendations