Advertisement

Theory for the Phase Behavior of Microemulsions

  • Max L. Robbins

Abstract

General trends in water and oil uptake in saturated microemulsions are correlated by idealized ternary diagrams. Winsor’s types of saturated micro-emulsions are assigned phase regions on the idealized diagram for the pseudo-3-component system: surfactant, oil and aqueous solution. Systematic shifts in these phase regions reflect changes in temperature, salinity, oil composition, surfactant head and chain size and other HLB parameters. Shinoda’s phase diagrams for nonionic surfactants are explained by the idealized ternary diagrams stacked along a temperature axis. The systematic transition in microemulsion type with temperature is shown with stacked ternaries. Saturation water and oil uptake in microemulsions made with ethox-ylated alkyl phenols are related to the ternary diagram. Water uptake increases and oil uptake decreases with increasing head/chain volume ratio and decreasing temperature or aromatics/paraffinics ratio in the oil. The interchangeability of the parameters surfactant head/chain volume ratio, surfactant/co-surfactant ratio (HLB), temperature, oil composition and aqueous phase salinity for controlling saturation water and oil up-take is demonstrated.

Keywords

Interfacial Tension Nonionic Surfactant Phase Behavior Ethylene Oxide Nonyl Phenol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Hoar and J. H. Schulman, Nature, 152, 102 (1943).CrossRefGoogle Scholar
  2. 2.
    J. H. Schulman and T. S. McRoberts, Trans. Faraday Soc., 42B 165 (1946).CrossRefGoogle Scholar
  3. 3.
    J. H. Schulman, T. S. McRoberts and D. P. Riley, Proc. Physiol. Soc., 107 49P (1948).Google Scholar
  4. 4.
    J. H. Schulman and D. P. Riley, J. Colloid Sci., 3, 383 (1948).CrossRefGoogle Scholar
  5. 5.
    J. H. Schulman and J. A. Friend, J. Colloid Sci., 4, 497 (1949).CrossRefGoogle Scholar
  6. 6.
    J. H. Schulman, R. Matalon and M. Cohen, Disc. Faraday Soc., 11, 117 (1951).CrossRefGoogle Scholar
  7. 7.
    J. E. L. Bowcott and J. H. Schulman, Z. Electrochem., 59, 283 (1955).Google Scholar
  8. 8.
    J. H. Schulman, W. Stoeckenius and L. M. Prince, J. Phys. Chem., 63, 1677 (1959).CrossRefGoogle Scholar
  9. 9.
    W. Stoeckenius, J. H. Schulman and L. M. Prince, Kolloid Z., 169 170 (1960).CrossRefGoogle Scholar
  10. 10.
    J. H. Schulman and J. B. Montagne, Ann. N. Y. Acad. Sci., 92, 366 (1961).CrossRefGoogle Scholar
  11. 11.
    C. E. Cooke and J. H. Schulman, in “Surface Chemistry, p. 231, Munksgaard, Copenhagen, Academic Press, N.Y. (1965).Google Scholar
  12. 12.
    J. W. McBain, Advances Colloid Sci., 1, 99 (1942).Google Scholar
  13. 13.
    J. W. McBain and P. W. Richards, Ind. Eng. Chem., 38, 642 (1946).CrossRefGoogle Scholar
  14. 14.
    P. A. Winsor, Trans. Faraday Soc., 44, 376 (1948).CrossRefGoogle Scholar
  15. 15.
    P. A. Winsor, “Solvent Properties of Amphiphilic Compounds”, pps. 7, 57–60, 68–71, 190, Butterworths, London, 1954.Google Scholar
  16. 16.
    P. A. Winsor, Chem. Reviews, 68, 1 (1968).CrossRefGoogle Scholar
  17. 17.
    S. R. Palit, V. A. Moghe and B. Biswas, Trans. Faraday Soc., 55, 463 (1959).CrossRefGoogle Scholar
  18. 18.
    K. Shinoda and S. Friberg, Adv. Colloid Interface Sci., 4 281 (1975).CrossRefGoogle Scholar
  19. 19.
    G. Gillberg, H. Lehtinen and S. Friberg, J. Colloid Interface Sci., 33, 40 (1970).CrossRefGoogle Scholar
  20. 20.
    K. Shinoda and H. Kunieda, J. Colloid Interface Sci., 42, 381 (1973).CrossRefGoogle Scholar
  21. 21.
    S. I. Ahmad, K. Shinoda and S. Friberg, J. Colloid Interface Sci., 47, 32 (1974).CrossRefGoogle Scholar
  22. 22.
    D. O. Shah, A. Tamjeedi, J. W. Falco and R. D. Walker, Jr., AIChE J., 18, 1116 (1972).CrossRefGoogle Scholar
  23. 23.
    D. O. Shah, “On Distinguishing Microemulsions from Cosolubilized Systems”, preprints for the 48th National Colloid Symposium, p. 173, Austin, Texas, June 1974.Google Scholar
  24. 24.
    L. M. Prince, J. Colloid Interface Sci., 52, 182 (1975).CrossRefGoogle Scholar
  25. 25.
    W. C. Griffin, J. Soc. Cosmet. Chem., 1, 311 (1949); 5, 249 (1954).Google Scholar
  26. 26.
    K. Shinoda, J. Colloid Interface Sci., 24, 4 (1967).CrossRefGoogle Scholar
  27. 27.
    K. Shinoda and H. Saito, J. Colloid Interface Sci., 26, 70 (1968).CrossRefGoogle Scholar
  28. 28.
    H. Saito and K. Shinoda, J. Colloid Interface Sci., 26, 70 (1970).Google Scholar
  29. 29.
    H. Saito and K. Shinoda, J. Colloid Interface Sci., 24, 10 (1967).CrossRefGoogle Scholar
  30. 30.
    K. Shinoda and T. Ogawa, J. Colloid Interface Sci., 24, 56(1967).CrossRefGoogle Scholar
  31. 31.
    K. Shinoda and H. Takede, J. Colloid Interface Sci., 32, 642 (1970).CrossRefGoogle Scholar
  32. 32.
    K. Kon-no and A. Kitahara J. Colloid Interface Sci., 33 124 (1970).CrossRefGoogle Scholar
  33. 33.
    K. Kon-no and A. Kitahara, J. Colloid Interface Sci., 34, 221 (1970).CrossRefGoogle Scholar
  34. 34.
    K. Kon-no and A. Kitahara, J. Colloid Interface Sci., 37, 469 (1971).CrossRefGoogle Scholar
  35. 35.
    K. Kon-no and A. Kitahara, J. Colloid Interface Sci., 41, 47 (1972).CrossRefGoogle Scholar
  36. 36.
    M. L. Robbins, “A Model for Oil Continuous Microemulsions”, presented at the Symposium on Microemulsions, ACS National Meeting, Washington, D.C., September 1971.Google Scholar
  37. 37.
    M. L. Robbins, “Theory of Microemulsions”, preprint for the Symposium on Interfacial Phenomena in Oil Recovery, AIChE National Meeting, Tulsa, Oklahoma, March 1974.Google Scholar
  38. 38.
    M. L. Robbins, “Theory of Microemulsions”, preprints for the 48th National Colloid Symposium, p. 174, Austin, Texas, June 1974.Google Scholar
  39. 39.
    M. L. Robbins, “Theory of Microemulsions I and II”, submitted to J. Colloid and Interface Sci.Google Scholar
  40. 40.
    R. N. Healy, R. L. Reed and D. G. Stenmark, “Multiphase Micro-emulsion Systems”, preprint 5565 for the Society of Petroleum Engineers of AIME Meeting, Dallas, Texas, September 1975.Google Scholar
  41. 41.
    L. W. Holm, J. Pet. Tech., 23, 1475 (1971).Google Scholar
  42. 42.
    H. Al-Rikabi and J. S. Osaba, Oil and Gas Journal, 10/22/73, p. 87.Google Scholar
  43. 43.
    F. Harusawa, S. Nakamura and T. Mitsui, J. Colloid and Polymer Sci., 252 613 (1974).CrossRefGoogle Scholar
  44. 44.
    S. Friberg and I. Lapczynska, Prog. Colloid and Polymer Sci., 56, 16 (1975).CrossRefGoogle Scholar
  45. 45.
    R. Haase and H. Schonert, “Solid-Liquid Equilibrium” in the “International Encyclopedia of Physical Chemistry and Chemical Physics”, Topic 13, Volume 1, p. 152, Pergamon Press (1969).Google Scholar
  46. 46.
    S. Glasstone and D. Lewis, “Elements of Physical Chemistry”, 2nd ed., Van Nostrand, Princeton, N.J. (1960), p. 410.Google Scholar
  47. 47.
    R. N. Healy and R. L. Reed, “Physicochemical Aspects of Micro-emulsion Flooding”, preprint SPE 4583 for the 48th Annual Fall Meeting of the SPE of AIME, Las Vegas, Nevada, September 1973.Google Scholar
  48. 48.
    K. Shinoda and H. Arai, J. Phys. Chem., 68, 3485 (1964).CrossRefGoogle Scholar
  49. 49.
    R. F. Fedors, Polymer Engineering Sci., 14, 147 (1974).CrossRefGoogle Scholar
  50. 50.
    W. D. Bancroft, J. Phys. Chem., 17, 501 (1913).CrossRefGoogle Scholar
  51. 51.
    G. H. A. Clowes, J. Phys. Chem., 20, 407 (1916).CrossRefGoogle Scholar
  52. 52.
    A. W. Adamson, “Physical Chemistry of Surfaces”, p. 393, Interscience, 1960.Google Scholar
  53. 53.
    A. Beerbower and M. W. Hill, “McCutcheon’s Detergents and Emulsifiers”, p. 223, Allured Publishing, Ridgewood, N. J., 1971.Google Scholar
  54. 54.
    H. L. Rosano, J. Soc. Cosmet. Chem., 25, 609 (1974).Google Scholar
  55. 55.
    W. Gerbacia and H. L. Rosano, J. Colloid Interface Sci., 44, 242 (1973).CrossRefGoogle Scholar
  56. 56.
    L. M. Prince, J. Colloid Interface Sci., 23, 165 (1967).CrossRefGoogle Scholar
  57. 57.
    L. M. Prince, J. Colloid Interface Sci., 29, 216 (1969).CrossRefGoogle Scholar
  58. 58.
    C. L. Murphy, “Thermodynamics of Low Tension and Highly Curved Interfaces”, Ph.D. Dissertation, Univ. of Minnesota (1966), University Microfilms, Ann Arbor, Michigan.Google Scholar
  59. 59.
    I. Langmuir, J. Amer. Chem. Soc., 39, 1848 (1917).CrossRefGoogle Scholar
  60. 60.
    W. D. Harkins, E. C. H. Davies and G. L. Clark, J. Amer. Chem. Soc., 39, 541 (1917).CrossRefGoogle Scholar
  61. 61.
    A. W. Adamson, J. Colloid Interface Sci., 29, 261 (1969).CrossRefGoogle Scholar
  62. 62.
    W. C. Tosch, S. C. Jones, and A. W. Adamson, J. Colloid Interface Sci., 31, 297 (1969).CrossRefGoogle Scholar
  63. 63.
    A. W. Adamson, “Physical Chemistry of Surfaces”, 2nd ed., pp. 100, 145, Interscience, 1967.Google Scholar
  64. 64.
    W. D. Harkins, “Physical Chemistry of Surface Films”, p. 136, Reinhold, New York, 1952.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Max L. Robbins
    • 1
  1. 1.Exxon Research and Engineering ComanyLindenUSA

Personalised recommendations