Oxygen Reduction on Sulphide Minerals

  • T. Biegler
  • D. A. J. Rand
  • R. Woods


Sulphide ores constitute the major economic source of nonferrous base metals. The reasons for interest in the electrochemistry of the sulphide minerals in such ores have been dealt with by Peters (1) elsewhere in this volume. Briefly, electrochemical mechanisms underlie many processes of practical importance in metal recovery from sulphides, such as the weathering (2–4) and leaching (5) of the ores and the production of sulphide mineral concentrates by froth flotation (6,7). These involve corrosion-like processes consisting of coupled anodic-cathodic reactions. Reduction of dissolved oxygen is the major cathodic component in certain of these systems, e.g. oxygen pressure leaching, the weathering of ore bodies as a consequence of differential aeration, and flotation with thiol collectors. It is the aim of the work presented here to provide a basis for understanding the chemistry of this reaction.


Oxygen Reduction Reaction Oxygen Reduction Sulphide Mineral Voltammetric Behaviour Iron Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Peters, This Volume, chap. V.Google Scholar
  2. 2.
    M. Sato and H.M., Mooney, Geophysics, 25 (1960) 226.CrossRefGoogle Scholar
  3. 3.
    M. Sato, Econ. Geol., 55 (1960) 1202.CrossRefGoogle Scholar
  4. 4.
    E.H. Nickel, J.R. Ross and M.R. Thornber, Econ. Geol., 69 (1974) 93.CrossRefGoogle Scholar
  5. 5.
    E. Peters, in D.J.I. Evans and R.S. Shoemaker (Eds.), International Symposium on Hydrometallurgy, AIME, New York, 1973, p. 205.Google Scholar
  6. 6.
    A. Granville, N.P. Finkelstein and S.A. Allison, Inst. Mining Met. Trans., Sect. C, 81 (1972) 1.Google Scholar
  7. 7.
    R. Woods in M.C. Fuerstenau (Ed.), Proceedings of the A.M. Gaudin Flotation Symposium, AlME, New York, 1976.Google Scholar
  8. 8.
    R. Tolun and J.A. Kitchener, Inst. Mining Met. Trans., 73 (1964) 313.Google Scholar
  9. 9.
    G. Springer, Inst. Mining Met. Trans., Sect. C, 79 (1970) 11.Google Scholar
  10. 10.
    S. Chander and D.W. Fuerstenau, J. Electroanal. Chem., 56 (1974) 217.CrossRefGoogle Scholar
  11. 11.
    M.J. Nicol, Inst. Mining Met. Trans., Sect. C, 84 (1975) 206.Google Scholar
  12. 12.
    T. Biegler, D.A.J. Rand and R. Woods, J. Electroanal. Chem., 60 (1975) 151.CrossRefGoogle Scholar
  13. 13.
    H. Tributsch, Ber. Bunsenges. Phys. Chem., 79 (1975) 570.Google Scholar
  14. 14.
    I. Morcos, J. Electrochem. Soc., 122 (1975) 1492.CrossRefGoogle Scholar
  15. 15.
    D.A.J. Rand, Oxygen reduction on sulphide minerals. Part III. Comparison of activities of various coppe, iron, lead, and nickel mineral electrodes, to be published.Google Scholar
  16. 16.
    A.P. Prosser in M.J. Jones (Ed.),Mineral Processing and Extractive Metallurgy, Institution of Mining and Metallurgy, London, 1970, p. 59.Google Scholar
  17. 17.
    T. Biegler, Oxygen reduction on sulphide minerals. Part II. Relation between activity and semiconducting properties of pyrite electrodes, J. Electroanal. Chem., in press.Google Scholar
  18. 18.
    J.P. Hoare, The Electrochemistry of Oxygen, Interscience, New York, 1968.Google Scholar
  19. 19.
    I.N. Plaksin and S.V. Bessonov in Proceedings of the Second International Congress on Surface Activity, Vol. 3, Butterworth, London, 1957, p. 361.Google Scholar
  20. 20.
    N.V. Blesing, J.A. Lackey and A.H. Spry in M.J. Jones (Ed.), Minerals and the Environment, Institution of Mining and Metallurgy, London, 1975, p, 341.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. Biegler
    • 1
  • D. A. J. Rand
    • 1
  • R. Woods
    • 1
  1. 1.CSIRO Division of Mineral ChemistryPort MelbourneAustralia

Personalised recommendations