Epoxide Hydratase: Purification to Apparent Homogeneity as a Specific Probe for the Relative Importance of Epoxides among Other Reactive Metabolites

  • F. Oesch
  • P. Bentley
  • H. R. Glatt

Abstract

Aromatic and olefinic compounds can be metabolized by microsomal monooxygenases to epoxides which chemically represent electrophilic species (for reviews, see refs. 1–5). Spontaneous binding of such epoxides to DNA, RNA, and protein has been observed (6–10). Accordingly, such metabolites have been suggested and, in some instances, shown to disturb the normal functions of cells, leading to such effects as mutagenesis (11–14), malignant transformation (15–19), or cell necrosis (20). However, aromatic and olefinic compounds are biotransformed to a vast array of metabolites (cf. refs. 21–27), possibly including a considerable number of reactive metabolites other than epoxides. The relative importance of epoxides among other reactive metabolites is at present unknown. With respect to the model compound used in this study, benzo[a]pyrene, our previous studies had shown that the 4,5- (K-region-) epoxide metabolite was a potent mutagen for the frameshift-sensitive Salmonella strains TA 1537 and TA 1538 (28), that the premutagenic hydrocarbon required a NADPH-supported microsomal monooxygenase system to become mutagenically active, and that the mutagenic response was potentiated by the presence of epoxide hydratase inhibitors at concentrations where no interference with other systems has been observed (28). Yet no conclusion could be reached whether the relative contribution of epoxide metabolites to the overall muta-genic effect of bioactivated benzo[a]pyrene was of any significance since the potentiation of the mutagenic effect by epoxide hydratase inhibitors could simply mean that blocking this pathway led to an accumulation of epoxides, making them important in this situation, while in absence of such inhibitors their contribution to the overall mutagenic effect may have been negligible.

Keywords

Cellulose Polycyclic Aromatic Hydrocarbon Fractionation Proline Tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Daly, D. M. Jerina, and B. Witkop, Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds, Experientia 28, 1129–1264 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Oesch, Mammalian epoxide hydrases: Inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3, 305–340 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    D. M. Jerina and J. W. Daly, Arene oxides: A new aspect of drug metabolism, Science 185, 573–582 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Sims and P. L. Grover, Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis, Adv. Cancer Res. 20, 165–274 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    M. G. Horning, C. M. Butler, J. Nowlin, and R. M. Hill, Drug metabolism in the human neonate, Life Sci. 16, 651–672 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    P. L. Grover and P. Sims, Interactions of the K-region epoxides of phenanthrene and dibenz[a,h] anthracene with nucleic acids and histone, Biochem. Pharmacol. 19, 2251–2259 (1970).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Kuroki, E. Huberman, H. Marquardt, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Binding of K-region epoxides and other derivatives of benz[a] anthracene and dibenz [a,h] anthracene to DNA, RNA and proteins of transformable cells; Chem.-Biol. Interactions 4, 389–397 (1971/72).Google Scholar
  8. 8.
    P. D. Lawley and N. Jarman, Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid, Biochem. J. 126, 893–900 (1972).PubMedGoogle Scholar
  9. 9.
    I. Y. Wang, R. E. Rasmussen, and T. T. Crooker, Isolation and characterization of an active DNA-binding metabolite of benzo [a] pyrene from hamster liver incubation systems, Biochem. Biophys. Res. Commun. 49, 1142–1149 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    P. L. Grover and P. Sims, K-region epoxides of polycyclic hydrocarbons: Reactions with nucleic acids and polyribonucleotides, Biochem. Pharmacol. 22, 661–666 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    M. J. Cookson, P. Sims, and P. L. Grover, Mutagenicity of epoxides of polycyclic hydrocarbons correlates with carcinogenicity of parent hydrocarbons, Nature (London) New Biol. 234, 186–187 (1971).Google Scholar
  12. 12.
    E. L. Huberman, L. Aspiras, C. Heidelberger, P. L. Grover, and P. Sims, Mutagenicity to mammalian cells of epoxides and other derivatives of polycyclic hydrocarbons, Proc. Natl. Acad. Sci. USA 68, 3195–3199 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    B. N. Ames, P. Sims. and P. L. Grover, Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens, Science 176, 47–49 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    O. G. Fahmy and M. J. Fahmy, Oxidative activation of benz [a] anthracene and methylated derivatives in mutagenesis and carcinogenesis, Cancer Res. 33, 2354–2361 (1973).PubMedGoogle Scholar
  15. 15.
    B. L. Van Duuren, L. Langseth, B. M. Goldschmidt, and L. Orris, Carcinogenicity of epoxides, lactones and peroxy compounds. VI. Structure and carcinogenic activity, J. Natl. Cancer Inst. 39, 1217–1228 (1967).PubMedGoogle Scholar
  16. 16.
    P. L. Grover, P. Sims, E. Huberman, H. Marquardt, T. Kuroki, and C. Heidelberger, In vitro transformation of rodent cells by K-region derivatives of polycyclic hydrocarbons, Proc. Natl. Acad. Sci. USA 68, 1098–1101 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Marquardt, T. Kuroki, E. Huberman, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Malignant transformation of cells derived from mouse prostate by epoxides and other derivatives of polycyclic hydrocarbons, Cancer Res. 32, 716–720 (1972).PubMedGoogle Scholar
  18. 18.
    E. Huberman, T. Kuroki, H. Marquardt, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Transformation of hamster embryo cells by epoxides and other derivatives of polycyclic hydrocarbons, Cancer Res. 32, 1391–1396 (1972).PubMedGoogle Scholar
  19. 19.
    K. Bürki, T. A. Stoming, and E. Bresnick, Effects of an epoxide hydrase inhibitor on in vitro binding of polycyclic hydrocarbons to DNA and on skin carcinogenesis, J. Natl. Cancer Inst. 52, 785–788 (1974).PubMedGoogle Scholar
  20. 20.
    B. B. Brodie, W. D. Reid, A. K. Cho, G. Sipes, G. Krishna, and J. R. Gillette, Possible mechanism of liver necrosis caused by aromatic organic compounds, Proc. Natl. Acad. Sci. USA 68, 160–164 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    H. L. Falk, P. Kotin, S. S. Lee, and A. Nathan, Intermediary metabolism of benzo[a]pyrene in the rat, J. Natl. Cancer Inst. 28, 699–724 (1962).Google Scholar
  22. 22.
    Ch. Nagata, M. Kodama, and Y. Tagashira, Electron spin resonance study on the interaction between chemical carcinogens and tissue components. II. Free radical produced by stirring aromatic hydrocarbons with tissue components such as skin homogenates or proteins, GANN 58, 493–504 (1967).PubMedGoogle Scholar
  23. 23.
    A. Dipple, P. D. Lawley, and P. Brookes, Theory of tumour initiation by chemical carcinogens: Dependence of activity on structure of ultimate carcinogen, J. Cancer 4, 493–505 (1968).Google Scholar
  24. 24.
    P. L. Grover, A. Hewer, and P. Sims, Metabolism of polycyclic hydrocarbons by rat-lung preparations, Biochem. Pharmacol. 23, 323–332 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Holder, H. Yagi, P. Dansette, D. M. Jerina, W. Levin, A. Y. H. Lu, and A. H. Conney, Effects of inducers and epoxide hydrase on the metabolism of benzo[a] pyrene by liver microsomes and a reconstituted system: Analysis by high pressure liquid chromatography, Proc. Natl. Acad. Sci. USA 71, 4356–4360 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    R. E. Rasmussen and I. Y. Wang, Dependence of specific metabolism of benzo[a]pyrene on the inducer of hydroxylase activity, Cancer Res. 34, 2290–2295 (1974).PubMedGoogle Scholar
  27. 27.
    J. K. Selkirk, R. G. Croy, P. P. Roller, and H. V. Gelboin, High-pressure liquid chromatographic analysis of benzo[a] pyrene metabolism and covalent binding and the mechanism of action of 7,8-benzoflavone and 1,2.epoxy-3,3,3-trichloropropane, Cancer Res. 34, 3474–3480 (1974).PubMedGoogle Scholar
  28. 28.
    F. Oesch and H. R. Glatt, in: Screening Tests in Chemical Carcinogenesis ( R. Montesano, H. Bartsch, and L. Tomatis, eds.), pp. 255–295, International Agency for Research on Cancer, Lyon (1976).Google Scholar
  29. 29.
    F. Oesch and J. Daly, Solubilization, purification and properties of a hepatic epoxide hydrase, Biochim. Biophys. Acta 227, 692–697 (1971).PubMedGoogle Scholar
  30. 30.
    F. Oesch, Purification and specificity of a human microsomal epoxide hydratase, Biochem. J. 139, 77–88 (1974).PubMedGoogle Scholar
  31. 31.
    A. Erel, Y. Zaidenzaig, and S. Shaltiel, Hydrocarbon coated Sepharoses: Use in the purification of glycogen phosphorylase, Biochem. Biophys. Res. Commun. 49, 383–390 (1972).CrossRefGoogle Scholar
  32. 32.
    K. Weber and M. Osborn, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244, 4406–4412 (1969).PubMedGoogle Scholar
  33. 33.
    R. A. Capaldi and G. Vanderkooi, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. USA 69, 930–932 (1972).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Bentley, F. Oesch, and A. Tsugita, Properties and amino acid composition of pure epoxide hydratase, FEBS Lett. 59, 296–299 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    B. N. Ames, F. D. Lee, and W. E. Durston, An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Natl. Acad. Sci. USA 70, 782–786 (1973).PubMedCrossRefGoogle Scholar
  36. 36.
    T. Chang, A. Savory, and A. J. Glazko, A new metabolite of 5,5-diphenylhydantoin (Dilantin), Biochem. Biophys. Res. Commun. 33, 444–449 (1970).CrossRefGoogle Scholar
  37. 37.
    J. T. Matschiner, R. G. Bell, J. M. Amelotti, and T. E. Knauer, Isolation and characterization of a new metabolite of phylloquinone in the rat, Biochim. Biophys. Acta 201, 309–315 (1970).PubMedGoogle Scholar
  38. 38.
    S. F. Sisenwine, C. O. Tio, S. R. Shrader, and H. Ruelius, The biotransformation of protriptyline in man, pig and dog, J. Pharmacol. Exp. Ther. 175, 51–59 (1970).PubMedGoogle Scholar
  39. 39.
    A. Frigerio, R. Fanelli, P. Biandrate, G. Passerini, P. L. Morselli, and S. Garattini, Mass spectrometric characterization of carbamazepine-10,11-epoxide, a carbamazepine metabolite isolated from human urine, J. Pharm. Sci. 61, 1144–1147 (1972).PubMedCrossRefGoogle Scholar
  40. 40.
    D. J. Harvey, L. Glazener, C. Stratton, D. B. Johnson, R. M. Hill, E. C. Horning, and M. G. Horning, Detection of epoxides of allylsubstituted barbiturates in rat urine, Res. Commun. Chem. Pathol. Pharmacol. 4, 247–260 (1972).PubMedGoogle Scholar
  41. 41.
    D. J. Harvey, L. Glazener, C. Stratton, J. Nowlin, R. M. Hill, and M. G. Horning, Detection of a 5-(2,4-dihydroxy-1,5-cyclohexadien-1-y1) metabolite of Phenobarbital and mephobarbital in rat, guinea pig and human, Res. Commun. Chem. Pathol. Pharmacol. 3, 557–565 (1972).PubMedGoogle Scholar
  42. 42.
    M. G. Horning, D. J. Harvey, J. Nowlin, W. G. Stillwell, and R. M. Hill, The use of gas chromatography mass spectrometry methods in perinatal pharmacology, Adv. Biochem. Psychopharmacol. 7, 113–124 (1973).PubMedGoogle Scholar
  43. 43.
    A. Frigerio, N. Sossi, G. Belvedere, C. Pantarotto, and S. Garattini, Identification of desmethylcyproheptadine-10–11-epoxide and other cyproheptadine metabolites isolated from rat uterine, J. Pharm. Sci, 63, 1536–1539 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    P. H. Grantham, L. C. Mohan, E. K. Weisburger, H. M. Fales, E. A. Sokoloski, and J. H. Weisburger, Identification of new water-soluble metabolites of acetanilide, Xenobiotica 4, 69–76 (1974).PubMedCrossRefGoogle Scholar
  45. 45.
    H. B. Hucker, A. J. Balletto, S. C. Stauffer, A. G. Zacchei, and B. H. Arison, Physiological disposition and urinary metabolites of cyproheptadine in the dog, rat, and cat, Drug Metal). Dispos. 2, 406–415 (1974).Google Scholar
  46. 46.
    H. B. Hucker, A. J. Balletto, J. Demetriades, B. H. Arison, and A. G. Zacchei, Epoxide metabolites of protriptyline in rat urine, Drug. Metab. Dispos. 3, 80–84 (1975).PubMedGoogle Scholar
  47. 47.
    H. Kappus and H. Remmer, Irreversible protein binding of C-imipramine with rat and human liver microsomes, Biochem. Pharmacol. 24, 1079–1084 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    D. M. Jerina, H. Yagi, and J. W. Daly, Arene oxides-oxepins, Heterocycles 1, 267–299 (1973).CrossRefGoogle Scholar
  49. 49.
    P. L. Morselli, P. Biandrate, A. Frigerio, M. Gerna, and G. Tognoni, in: Gas Chromatographic Determination of Carbamazepine and Carbamazepine-10,11-Epoxide in Human Body Fluids ( J. W. A. Meijer, H. Mienardi, C. Gardner-Thorpe, and E. van der Kleijn, eds.), pp. 169–175, Excerpta Medica, Amsterdam (1973).Google Scholar
  50. 50.
    M. Eichelbaum and L. Bertilsson, Determination of carbamazepine and its epoxide metabolite in plasma by high-speed liquid chromatography, J. Chromatogr. 103, 135–140 (1975).PubMedCrossRefGoogle Scholar
  51. 51.
    J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames, Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids, Proc. Natl. Acad. Sci. USA 72, 979–983 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. Oesch
    • 1
  • P. Bentley
    • 1
  • H. R. Glatt
    • 1
  1. 1.Section of Biochemical Pharmacology of the University of MainzMainzGerman Federal Republic

Personalised recommendations