Monoamine Oxidase Inhibitors: Animal Pharmacology

  • Richard F. Squires


The animal pharmacology of the monoamine oxidase inhibitors (MAOIs*) has been reviewed previously by Zirkle and Kaiser (1964), Biel et al. (1964), Pscheidt (1964), Horita (1967), and Jacob and Simon (1968).


Monoamine Oxidase Monoamine Oxidase Inhibitor Paradoxical Sleep Brain Serotonin Audiogenic Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this chapter


adrenocorticotrophic hormone


α- methyl-p-tyrosine (or its methyl ester, H 44/68)


2-bromlysergic acid diethylamide












follicle-stimu-lating-hormone-releasing factor


bis(4-methyl-l-homopiperazinyl thio carbonyl) disulfide


follicle-stimulating hormone


γ-aminobutyric acid


serum gonadotropin


5-hydroxyindoleacetic acid


5-hydroxytryptamine, serotonin






luteinizing hormone


luteinizing-hormone-releasing factor


monoamine oxidase


monoamine oxidase inhibitor




melanocyte-inhibiting factor (L-prolyl-L-leucyl-glycinamide)




p-chlorophenylalanine (or its methyl ester, H 69/17)






paradoxical sleep


rapid eye movement


spontaneously hypertensive


thyrotropin-releasing hormone.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., 1972, Influence of drugs on the firing of serotonin-containing neurons in brain, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:91–96.Google Scholar
  2. Aghajanian, G. K., Graham, A. W., and Sheard, M. H., 1970, Serotonin-containing neurons in brain: Depression of firing by monoamine oxidase inhibitors, Science 169:1100–1102.PubMedGoogle Scholar
  3. Aghajanian, G. K., Haigler, H. J., and Bloom, F. E., 1972, Lysergic acid diethylamide and serotonin: Direct actions on serotonin-containing neurons in rat brain, Life Sci. 11:615–622.Google Scholar
  4. Agurell, S., Holmstedt, B., and Lindgren, J. E., 1969, Metabolism of 5-methoxy-N,N-dimethyltryptamine-14C in the rat, Biochem. Pharmacol. 18:2771–2781.PubMedGoogle Scholar
  5. Ahlborg, U., Holmstedt, B., and Lindgren, J. E., 1968, Fate and metabolism of some hallucinogenic indolealkylamines, in: Advances in Pharmacology (S. Garattini and P. A. Shores, eds.), Vol. 6B, pp. 213–229, Academic Press, New York.Google Scholar
  6. Ahlenius, S., Eriksson, H., Larsson, K., Modigh, K., and Södersten, P., 1971, Mating behavior in the male rat treated with p-chlorophenylalanine methyl ester alone and in combination with pargyline, Psychopharmacologia 20:383–388.PubMedGoogle Scholar
  7. Ahtee, L., 1975, Dextromethorphan inhibits 5-hydroxytryptamine uptake by human blood platelets and decreases 5-hydroxyindoleacetic acid content in rat brain, J. Pharm. Pharmacol. 27:117–180.Google Scholar
  8. Ahtee, L., and Saarnivaara, L., 1971, The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets, J. Pharm. Pharmacol. 23:495–501.PubMedGoogle Scholar
  9. Ahtee, L., and Saarnivaara, L., 1973, The effect of narcotic analgesics on the uptake of 5-hydroxytryptamine and (-)-metaraminol by blood platelets, Br. J. Pharmacol. 47:808–818.PubMedGoogle Scholar
  10. Airaksinen, M. M., Mustala, O., and Torsti, P., 1966, Effects of some biogenic amines on the blood pressure of pargyline-treated rabbits, Ann. Med. Exp. Fenn. 44:376–381.PubMedGoogle Scholar
  11. Alexander, G. J., and Kopeloff, L. M., 1970, Metrazol seizures in rats: Effect of p-chlorophenylalanine, Brain Res. 22:231–235.PubMedGoogle Scholar
  12. Alleva, J. J., and Umberger, E. J., 1966, Evidence for neural control of the release of pituitary ovulating hormone in the golden Syrian hamster, Endocrinology 78:1125.PubMedGoogle Scholar
  13. Alleva, J. J., Overpeck, J. G., and Umberger, E. J., 1966, Effect of tranylcypromine and iproniazid on brain amine levels and ovulation in the golden hamster, Life Sci. 5:1557–1561.PubMedGoogle Scholar
  14. Alpers, H. S., and Himwich, H. E., 1972, The effects of chronic imipramine administration on rat brain levels of serotonin, 5-hydroxyindoleacetic acid, norepinephrine and dopamine, J. Pharmacol. Exp. Ther. 180:531–538.PubMedGoogle Scholar
  15. Altier, H., Moldes, M., and Monti, J. M., 1975, The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition, Br. J. Pharmacol. 54:101–106.PubMedGoogle Scholar
  16. Andén, N.-E., Corrodi, H., and Fuxe, K., 1972, Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine-and dopamine-β-hydroxylase inhibitors, J. Pharm. Pharmacol. 24:177–182.PubMedGoogle Scholar
  17. Anderson, E. G., Markowitz, S. D., and Bonnycastle, D. D., 1962, Brain 5-hydroxytryptamine and anticonvulsant activity, J. Pharmacol. Exp. Ther. 136:179–182.PubMedGoogle Scholar
  18. Antonaccio, M. J., and Robson, R. D., 1974, L-Dopa hypotension in dogs: Evidence for mediation through 5-HT release, Arch. Int. Pharmacodyn. Ther. 212:89–102.PubMedGoogle Scholar
  19. Antonaccio, M. J., and Robson, R. D., 1975, Centrally mediated cardiovascular effects of 5-hydroxytryptophan in MAO-inhibited dogs: Modification by autonomic antagonists, Arch. Int. Pharmacodyn. Ther. 213:200–210.PubMedGoogle Scholar
  20. Antonaccio, M. J., and Smith, C. B., 1967, Effects of chronic pretreatment with pargyline on the contractile responses of isolated guinea-pig left atrial strips to tyramine, d-amphetamine and adrenergic nerve stimulation, Pharmacologist 9:211.Google Scholar
  21. Arioka, I., and Tanimukai, H., 1957, Histochemical studies on monoamine oxidase in the mid-brain of the mouse, J. Neurochem. 1:311–315.PubMedGoogle Scholar
  22. Arnow, L. E., 1959, Phenelzine: A therapeutic agent for mental depression, Clin. Med. 6:1573–1577.Google Scholar
  23. Blackwell, B., Marley, E., and Mabbit, L. A., 1965, Effects of yeast extract after monoamine-oxidase inhibition, Lancet 1:940–943.PubMedGoogle Scholar
  24. Blaschko, H., 1952, Amine oxidase and amine metabolism, Pharmacol. Rev. 4:415–458.PubMedGoogle Scholar
  25. Blaschko, H., 1963, Amine oxidase, in: The Enzymes (P. D. Boyer, ed.), pp. 337–351, Academic Press, New York.Google Scholar
  26. Blaschko, H., and Philpot, F. J., 1953, Enzymic oxidation of tryptamine derivatives, J. Physiol. (London) 122:403–408.Google Scholar
  27. Bloom, F. E., Sims, K. L., Weitsen, H. A., Davis, G. A., and Hanker, J. S., 1972, Cytochemical differentiation between monoamine oxidase and other neuronal oxidases, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, eds.), pp. 243–262, Raven Press, New York.Google Scholar
  28. Bocknik, S. E., Hingtgen, J. N., Hughes, F. W., and Forney, R. B., 1968, Harmaline effects on tetrabenazine depression of avoidance responding in rats, Life Sri. 7(Pt. I):1189–1201.Google Scholar
  29. Bogdanski, D. F., Weissbach, H., and Udenfriend, S., 1958, Pharmacological studies with the serotonin precursor, 5-hydroxytryptophan, J. Pharmacol. Exp. Ther. 122:188–194.Google Scholar
  30. Boling, J. L., and Blandau, R. J., 1939, The estrogen-progesterone induction of mating responses in the spayed female rat, Endocrinology 25:359–364.Google Scholar
  31. Bolme, P., Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., and Goldstein, M., 1974, Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine, Eur. J. Pharmacol. 28:89–94.PubMedGoogle Scholar
  32. Bolme, P., Fuxe, K., and Hökfelt, T., 1975, Evidence for a central inhibitory adrenaline and GABA mechanism in the control of arterial blood pressure, 6th International Congress of Pharmacology, July 20–25, Helsinki, Abstract No. 1377, p. 570.Google Scholar
  33. Bond, V. J., Shillito, E. E., and Vogt, M., 1972, Influence of age and of testosterone on the response of male rats to parachlorophenylalanine, Br. J. Pharmacol. 46:46–55.PubMedGoogle Scholar
  34. Bonnycastle, D. D., Giarman, N. J., and Paasonen, M. K., 1957, Anticonvulsant compounds and 5-hydroxytryptamine in rat brain, Br. J. Pharmacol. 12:228–231.Google Scholar
  35. Bouchaud, C., and Jacque, C., 1971, La restauration des monoamine oxydases (MAO) chez le rat après inhibition “irréversible.” Etude biochimique et histochimique comparée, Histochemie 28:355–366.PubMedGoogle Scholar
  36. Boulton, A. A., and Baker, G. B., 1975, The subcellular distribution of β-phenylethylamine, p-tyramine and tryptamine in rat brain, J. Neurochem. 25:477–481.PubMedGoogle Scholar
  37. Bowers, M., and Kupfer, D. J., 1971, Central monoamine oxidase inhibition and REM sleep, Brain Res. 35:561–564.PubMedGoogle Scholar
  38. Brachfeld, J., Wirtshai-Fer, A., and Wolfe, S., 1963, Imipramine-tranylcypromine incompatibility. Near-fatal toxic reaction, J. Am. Med. Assoc. 186:1172–1173.Google Scholar
  39. Braestrup, C., Andersen, H., and Randrup, A., 1975, The monoamine oxidase β-inhibitor deprenyl potentiates phenylethylamine behaviour in rat without inhibition of catechola-mine metabolite formation, Eur. J. Pharmacol. 34:181–187.PubMedGoogle Scholar
  40. Bramwell, G. J., 1974, The effect of antidepressants on unit activity in the midbrain raphe of rats, Arch. Intern. Pharmacodyn. Ther. 211:24–33.Google Scholar
  41. Brest, A. N., Onesti, G., Heider, C., and Moyer, J. H., 1963, Cardiac and renal hemodynamic response to pargyline, Ann. N. Y. Acad. Sci. 107:1016–1021.PubMedGoogle Scholar
  42. Brodie, B. B., Pletscher, A., and Shore, P. A., 1956, Possible role of serotonin in brain function and in reserpine action, J. Pharmacol. Exp. Ther. 116:9.Google Scholar
  43. Brodie, B. B., Spector, S., and Shore, P. A., 1959, Interaction of monoamine oxidase inhibitors with physiological and biochemical mechanisms in brain, Ann. N. Y. Acad. Sci. 80:609–614.PubMedGoogle Scholar
  44. Brownlee, G., and Williams, G. W., 1963, Potentiation of amphetamine and pethidine by monoamineoxidase inhibitors, Lancet 1:669.PubMedGoogle Scholar
  45. Brunjes, S., Haywood, L. J., and Maronde, R. F., 1963, A controlled study of the antihypertensive response to an MAO inhibitor. B. Urinary excretion of catecholamines and their metabolites, Ann. N. Y. Acad. Sci. 107:982–991.PubMedGoogle Scholar
  46. Buczko, W., de Gaetano, G., and Garattini, S., 1974, Influence of some tricyclic antidepressive drugs on the uptake of 5-hydroxytryptamine by rat blood platelets, J. Pharm. Pharmacol. 26:814–815.PubMedGoogle Scholar
  47. Buus Lassen, J., 1972a, Behavioral effect of tricyclic thymoleptics and chlorpheniramine in mice after pretreatment with 5-hydroxytryptophan (5HTP), Acta Pharmacol. Toxicol. 31(Suppl. I):11.Google Scholar
  48. Buus Lassen, J., 1972b, Potentiation of the anticonvulsant effect of 5-hydroxy-tryptophan (5HTP) in mice by tricyclic thymoleptics and MAO inhibitors, 5th International Congress of Pharmacology, July 23–28 (abstract).Google Scholar
  49. Buus Lassen, J., Squires, R. F., Christensen, J. A., and Molander, L., 1975, Neurochemical and pharmacological studies on a new 5HT-uptake inhibitor, FG 4963, with potential antidepressant properties, Psychopharmacologia 42:21–26.Google Scholar
  50. Carlsson, A., 1970, Structural specificity for inhibition of [14C]5-hydroxytryptamine uptake by cerebral slices. Pharm. Pharmacol. 22:729–732.Google Scholar
  51. Carlsson, A., and Corrodi, H., 1964, In den Catecholamin-Metabolismus eingreifende Substanzen. 3. 2,3-Dihydroxyphenylacetamide and verwandte Verbindungen, Hely. Chico. Acta 47:1340–1349.Google Scholar
  52. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20:140–144.Google Scholar
  53. Carlsson, A., and Lindqvist, M., 1969, Central and peripheral monoaminergic membrane-pump blockade by some addictive analgesics and antihistamines, J. Pharm. Pharmacol. 21:460–464.PubMedGoogle Scholar
  54. Carlsson, A., and Waldeck, B., 1963, β-Hydroxylation of tyramine in vivo, Acta Pharmacol. Toxicol. 20:371–374.Google Scholar
  55. Carlsson, A., Dahlström, A., Fuxe, K., and Lindqvist, M., 1965, Histochemical and biochemical detection of monoamine release from brain neurons, Life Sci. 4:809–816.PubMedGoogle Scholar
  56. Carlsson, A., Fuxe, K., and Ungerstedt, U., 1968, The effect of imipramine on central 5-hydroxytryptamine neurons, J. Pharm. Pharmacol. 20:150–151.PubMedGoogle Scholar
  57. Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969a, Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine, Eur. J. Pharmacol. 5:357–366.PubMedGoogle Scholar
  58. Carlsson, A., Jonason, J., Lindqvist, M., and Foxe, K., 1969b, Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine, Brain Res. 12:456–460.PubMedGoogle Scholar
  59. Charalampous, K. D., and Tansey, L. W., 1967, Metabolic fate of β-(3,4-dimethoxyphenyl)-ethylamine in man, J. Pharmacol. Exp. Ther. 155:318–329.PubMedGoogle Scholar
  60. Chen, G., and Bohner, B., 1957, A method for the biological assay of reserpine and reserpine-like activity, J. Pharmacol. Exp. Ther. 119:559–565.PubMedGoogle Scholar
  61. Chen, G., and Bohner, B., 1961, The anti-reserpine effects of certain centrally-acting agents, J. Pharmacol. Exp. Ther. 131:179–184.PubMedGoogle Scholar
  62. Chen, G., Ensor, C. R., and Bohner, B., 1954, A facilitation action of reserpine on the central nervous system, Proc. Soc. Exp. Biol. Med. 86:507–510.PubMedGoogle Scholar
  63. Chen, G., Ensor, C. R., and Bohner, B., 1968, Drug effects on the disposition of active biogenic amines in the CNS, Life Sci. 7(Pt. I):1063–1074.PubMedGoogle Scholar
  64. Chessin, M., Kramer, E. R., and Scott, C. C., 1957, Modifications of the pharmacology of reserpine and serotonin by iproniazid, J. Pharmacol. Exp. Thor. 119:453–460.Google Scholar
  65. Chow, M.-I., and Hendley, C. D., 1959, Effect of monoamine oxidase inhibitors on experimental convulsions, Fed. Proc. Fed. Am. Soc. Exp. Biol. 18:376.Google Scholar
  66. Christmas, A. J., Coulson, C. J., Maxwell, D. R., and Riddell, D., 1972, A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors, Br. J. Pharmacol. 45:490–503.PubMedGoogle Scholar
  67. Ciofalo, F. R., 1974, Methadone inhibition of 3H-5-hydroxytryptamine uptake by synapto-somes, J. Pharmacol. Exp. Ther. 189:83–89.PubMedGoogle Scholar
  68. Clarke, D. E., 1970, Restoration of tyramine responses by bretylium, BW 392C60, bethanidine and monoamine oxidase inhibitors in reserpine-treated rats, Br. J. Pharmacol. 38:1–11.PubMedGoogle Scholar
  69. Clement, A. J., and Benazon, D., 1962, Reactions to other drugs in patients taking monoamine-oxidase inhibitors, Lancet 2:197–198.Google Scholar
  70. Clineschmidt, B. V., 1972, Spinal monoamines and the toxic interaction between monoamine oxidase inhibitors and tricyclic antidepressants, Eur. J. Pharmacol. 19:126–129.PubMedGoogle Scholar
  71. Consolo, S., Giacosini, E., and Karjalainen, K., 1968, Monoamine oxidase in sympathetic ganglia of the cat, Acta Physiol. Scand. 74:513–520.PubMedGoogle Scholar
  72. Coppen, A., Shaw, D. M., Malleson, A., Eccleston, E., and Gundy, G., 1965, Tryptamine metabolism in depression, Br. J. Psychiatry 3:993–998.Google Scholar
  73. Corne, S. J., Pickering, R. W., and Warner, B. T., 1963, A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine, Br. J. Pharmacol. 20:106–120.Google Scholar
  74. Corrodi, H., 1966, Blockade of the psychotic syndrome caused by nialamide in mice, J. Pharm. Pharmacol. 18:197–199.PubMedGoogle Scholar
  75. Corrodi, H., and Fuxe, K., 1967, The effect of catecholamine precursors and monoamine oxidase inhibition on the amine levels of central catecholamine neurons after reserpine treatment or tyrosine hydroxylase inhibition, Life Sci. 6:1345–1350.PubMedGoogle Scholar
  76. Cowan, A., and Harry, E. J. R., 1974, Potentiation of picrotoxin-induced convulsions in mice by antidepressants. Specificity of the effect, Br. J. Pharmacol. 52:432P.PubMedGoogle Scholar
  77. Coyle, J. T., and Snyder, S. H., 1969a, Catecholamine uptake by synaptosomes in homogenates of rat brain: Stereospecificity in different areas, J. Pharmacol. Exp. Ther. 170:221–231.PubMedGoogle Scholar
  78. Coyle, J. T., and Snyder, S. H., 1969b, Antiparkinsonian drugs: Inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action, Science 166:899–901.PubMedGoogle Scholar
  79. Craig, D. D., 1962, Reaction to pethidine in patients on phenelzine, Lancet 2:559.Google Scholar
  80. Dahlström, A., 1972, The axonal transport of monoamine oxidases, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, eds.), pp. 293–305, Raven Press, New York.Google Scholar
  81. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62 (Suppl. 232):5–55.Google Scholar
  82. Dahlström, A., Jonason, J., and Norberg, K.-A., 1969, Monoamine oxidase activity in rat sciatic nerves after constriction, Eur. J. Pharmacol. 6:248–254.PubMedGoogle Scholar
  83. Daly, E. C., and Aprison, M. H., 1974, Distribution of serine hydroxymethyltransferase and glycine transaminase in several areas of the central nervous system of the rat, J. Neurochem. 22:877–885.PubMedGoogle Scholar
  84. da Prada, M., Carruba, M., Saner, A., O’Brien, R. A., and Pletscher, A., 1973, The action of L-dopa on sexual behaviour of male rats, Brain Res. 55:383–389.PubMedGoogle Scholar
  85. Davey, M. J., Farmer, J. B., and Reinert, H., 1963, The effects of nialamide on adrenergic functions, Br. J. Pharmacol. 20:121–134.Google Scholar
  86. Davies, G., 1960, Side-effects of phenelzine, Br. Med. J. 2:1019.Google Scholar
  87. Davis, J. N., Carlsson, A., Macmillian, V., and Siesjö, B. K., 1973, Brain tryptophan hydroxylation: Dependence on arterial oxygen tension, Science 182:72–74.PubMedGoogle Scholar
  88. Davison, A. N., 1958, Physiological role of monoamine oxidase, Physiol. Rev. 38:729–747.PubMedGoogle Scholar
  89. Day, M. D., and Rand, M. J., 1963, Tachyphylaxis to some sympathomimetic amines in relation to monoamine oxidase, Br. J. Pharmacol. 21:84–96.Google Scholar
  90. Day, M. D., and Roach, A. G., 1974a, Central α-and β-adrenoceptors modifying arterial blood pressure and heart rate in conscious cats, Br. J. Pharmacol. 51:325–333.PubMedGoogle Scholar
  91. Day, M. D., and Roach, A. G., 1974b, Central adrenoreceptors and the control of arterial blood pressure, Clin. Exp. Pharmacol. Physiol. 1:347–360.PubMedGoogle Scholar
  92. de Jong, W., 1974, Noradrenaline: Central inhibitory control of blood pressure and heart rate, Eur. J. Pharmacol. 29:179–181.PubMedGoogle Scholar
  93. de Jong, W., Nijkamp, F. P., and Bohus, B., 1975, Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats, Arch. Intern. Pharmacodyn. Ther. 213:272–284.Google Scholar
  94. de la Lande, I. S., Hill, B. D., Jellett, L. B., and Mcneil, J. M., 1970, The role of monoamine oxidase in the response of the isolated central artery of the rabbit ear to tyramine, Br. J. Pharmacol. 40:249–256.PubMedGoogle Scholar
  95. de la Torre, J. C., and Mullan, S., 1970, A possible role for 5-hydroxytryptamine in drug-induced seizures, J. Pharm. Pharmacol. 22:858–859.PubMedGoogle Scholar
  96. de la Torre, J. C., Kawanaga, H. M., and Mullan, S., 1970, Seizure susceptibility after manipulation of brain serotonin, Arch. Intern. Pharmacodyn. Ther. 188:298–304.Google Scholar
  97. del Fiacco, M., Fratta, W., Gessa, G. L., and Tagliamonte, A., 1974, Lack of copulatory behaviour in male castrated rats after p-chlorophenylalanine, Br. J. Pharmacol. 51:249–251.PubMedGoogle Scholar
  98. Delini-Stula, A., and Maitre, L., 1975, Effects of psychotropic drugs on the behaviour produced by combined treatment with pargyline and tryptamine, 6th International Congress of Pharmacology, July 20–25, Helsinki (abstract).Google Scholar
  99. de Lores Arnaiz, G. R., and de Robertis, E. D. P., 1962, Cholinergic and non-cholinergic nerve endings in the rat brain. II. Neurochem. 9:503–508.Google Scholar
  100. Delorme, F., Jeannerod, M., and Jouvet, M., 1965, Effets remarquables de la réserpine sur l’activité EEG phasique ponto-géniculo-occipitale, C. R. Soc. Biol. 159:900–903.Google Scholar
  101. Denton, P. H., Borelli, V. M., and Edwards, N. V., 1962, Dangers of monoamine oxidase inhibitors, Br. Med. J. 2:1752–1753.Google Scholar
  102. de Oliveira, L. F., and Bretas, A. D., 1974, Effects of 5-hydroxytryptophan, iproniazid and p-chlorophenylalanine on lidocaine seizure threshold of mice, Eur. J. Pharmacol. 29:5–9.PubMedGoogle Scholar
  103. Dewsbury, D. A., Davis, H. N., and Jansen, P. E., 1972, Effects of monoamine oxidase inhibitors on the copulatory behavior of male rats, Psychopharmacologia 24:209–217.Google Scholar
  104. Dixit, K. S., Dhasmana, K. M., Sinha, J. N., and Bhargava, K. P., 1970, Role of catecholamines in fatal hyperpyrexia induced by imipramine in MAOI treated rabbits, Arch. Intern. Pharmacodyn. Ther. 188:86–91.Google Scholar
  105. Dubnick, B., Leeson, G. A., and Phillips, G. E., 1962, An effect of monoamine oxidase inhibitors on brain serotonin of mice in addition to that resulting from inhibition of monoamine oxidase, J. Neurochem. 9:299–306.PubMedGoogle Scholar
  106. Dubnick, B., Rucki, E. W., and Salama, A. I., 1973, A comparison of l-p-acetyldeoxyephedrine and 4-methyl-α-ethyl-m-tyramine as to lowering of brain serotonin, and their antagonism by antidepressants, Eur. J. Pharmacol. 22:121–128.PubMedGoogle Scholar
  107. Dunkley, B., Sanghvi, I., Friedman, E., and Gershon, S., 1972, Comparison of behavioral and cardiovascular effects of L-DOPA and 5-HTP in conscious dogs, Psychopharmacologia 26:161–172.PubMedGoogle Scholar
  108. Dunleavy, D. L. F., 1973, Mood and sleep changes with monoamine-oxidase inhibitors, Proc. R. Soc. Med. 66:951.PubMedGoogle Scholar
  109. Dunleavy, D. L. F., and Oswald, I., 1973, Phenelzine, mood response, and sleep, Arch. Gen. Psychiatry 28:353–356.PubMedGoogle Scholar
  110. Dyer, D. C., and Weber, L. J., 1971, 5-Hydroxytryptamine and monoamine oxidase in adult and foetal sheep blood vessels, J. Pharm. Phalmacol. 23:549–550.Google Scholar
  111. Eble, J. N., and Rudzik, A., 1966, The effects of harmine and tranylcypromine on the pressor responses to biogenic amines in the reserpine-pretreated dog, Life Sci. 5:1125–1131.PubMedGoogle Scholar
  112. Eccleston, D., Ashcroft, G. W., and Crawford, T. B. B., 1965, 5-Hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. II. Applications and drug studies, J. Neurochem. 12:493–503.PubMedGoogle Scholar
  113. Eccleston, D., Ashcroft, G. W., Crawford, T. B. B., and Loose, R., 1966, Some observations on the estimation of tryptamine in tissues, J. Neurochem. 13:93–101.PubMedGoogle Scholar
  114. Elis, J., Laurence, D. R., Mattie, H., and Prichard, B. N. C., 1967, Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure, Br. Med. J. 2:75–78.PubMedGoogle Scholar
  115. Eltherington, L. G., and Horita, A., 1960, Some pharmacological actions of beta-phenylisopropylhydrazine (PIH), J. Pharmacol. Exp. Ther. 128:7–14.PubMedGoogle Scholar
  116. Endersby, C. A., Robson, J. M., Sullivan, F. M., and Wilson, C., 1970, The effect of 5-hydroxytryptamine on ovulation in rats, J. Endocrinol. 48:63–64.PubMedGoogle Scholar
  117. Ernst, A. M., 1972, Relationship of the central effect of dopamine on gnawing compulsion syndrome in rats and the release of serotonin, Arch. Intern. Pharmacodyn. Ther. 199:219–225.Google Scholar
  118. Fahim, I., Ismail, M., and Osman, O. H., 1972, The role of 5-hydroxytryptamine and noradrenaline in the hyperthermic reaction induced by pethidine in rabbits pretreated with pargyline, Br. J. Pharmacol. 46:416–422.PubMedGoogle Scholar
  119. Ferguson, J., Henriksen, S., Cohen, H., Mitchell, G., Barchas, J., and Dement, W., 1970, “Hypersexuality” and behavioral changes in cats caused by administration of p-chlorophenylalanine, Science 168:499–501.PubMedGoogle Scholar
  120. Fisher, D. B., and Kaufman, S., 1972, The inhibition of phenylalanine and tyrosine hydroxylases by high oxygen levels, J. Neurochem. 19:1359–1365.PubMedGoogle Scholar
  121. Flórez, J., and Armijo, J. A., 1974, Effect of central inhibition of the 1-aminoacid decarboxylase on the hypotensive action of 5-HT precursors in cats, Eur. J. Pharmacol. 26:108–110.PubMedGoogle Scholar
  122. Forbes, W. R., 1970, The effects of the monoamine oxidase inhibitor tranylcypromine on the testis weight of the cockerel, J. Endocrinol. 47:387–388.PubMedGoogle Scholar
  123. Fuentes, J. A., and Neff, N. H., 1975, Selective monoamine oxidase inhibitor drugs as aids in evaluating the role of type A and B enzymes, Neuropharmacology 14:819–825.PubMedGoogle Scholar
  124. Fuller, R. W., 1968, Influence of substrate in the inhibition of rat liver and brain monoamine oxidase, Arch. Intern. Pharmacodyn. Ther. 174:32–37.Google Scholar
  125. Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, eds.), pp. 339–354, Raven Press, New York.Google Scholar
  126. Fuller, R. W., and Roush, B. W., 1972, Substrate-selective and tissue-selective inhibition of monoamine oxidase, Arch. Intern. Pharmacodyn. Ther. 198:270–276.Google Scholar
  127. Fuller, R. W., Warren, B. J., and Molloy, B. B., 1970, Selective inhibition of monoamine oxidase in rat brain mitochondria, Biochem. Pharmacol. 19:2934–2936.PubMedGoogle Scholar
  128. Fuller, R. W., Perry, K. W., and Molloy, B. B., 1974a, Effect of an uptake inhibitor on serotonin metabolism in rat brain: Studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140), Life Sci. 15:1161–1171.PubMedGoogle Scholar
  129. Fuller, R. W., Perry, K. W., Snoddy, H. D., and Molloy, B. B., 1974b, Comparison of the specificity of 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine and chlorimipramine as amine uptake inhibitors in mice, Eur. J. Pharmacol. 28:233–236.PubMedGoogle Scholar
  130. Furchgott, R. F., and Garcia, P. S., 1968, Effects of inhibition of monoamine oxidase on the actions and interactions of norepinephrine, tyramine and other drugs on guinea-pig left atrium, J. Pharmacol. Exp. Ther. 163:98–122.PubMedGoogle Scholar
  131. Furness, J. B., and Costa, M., 1971, Monoamine oxidase histochemistry of enteric neurones in the guinea-pig, Histochemie 28:324–336.PubMedGoogle Scholar
  132. Fuxe, K., and Ungerstedt, U., 1967, Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection, J. Pharm. Pharmacol. 19:335–337.PubMedGoogle Scholar
  133. Fuxe, K., and Ungerstedt, U., 1968, Histochemical studies on the effect of (+)-ampheta-mine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine, Eur. J. Pharmacol. 4:135–144.PubMedGoogle Scholar
  134. Fuxe, K., Hökfelt, T., and Ungerstedt, U., 1968, Localization of indolealkylamines in CNS, in: Advances in Pharmacology, Vol. 6 (S. Garattina and P. A. Shore, eds.), Part A, pp. 235–251, Academic Press, New York and London.Google Scholar
  135. Fuxe, K., Lidbrink, P., Hökfelt, T., Bolme, P., and Goldstein, M., 1974, Effects of piperoxane on sleep and waking in the rat. Evidence for increased waking by blocking inhibitory adrenaline receptors on the locus coeruleus, Acta Physiol. Scand. 91:566–567.PubMedGoogle Scholar
  136. Gallagher, C. H., Koch, J. H., Moore, R. M., and Steel, J. D., 1964, Toxicity of phalaris tuberosa for sheep, Nature (London) 204:542–545.Google Scholar
  137. Ganong, W. F., 1974, The role of catecholamines and acetylcholine in the regulation of endocrine function, Life Sci. 15:1401–1414.PubMedGoogle Scholar
  138. Gawienowski, A. M., and Hodgen, G. D., 1971, Homosexual activity in male rats after p-chlorophenylalanine: Effects of hypophysectomy and testosterone, Physiol. Behav. 7:551–555.PubMedGoogle Scholar
  139. Gerold, M., 1968, Wirkung von Tyramin and Käse auf den Blutdruck and deren Beeinflussung dutch DL-Serin-N2-isopropyl-hydrazid (Ro 4-1038) and wachen intakten Hunden, Arzneim.-Forsch. 18:1198–1200.Google Scholar
  140. Gessa, G. L., and Tagliamonte, A., 1973, Role of brain monoamines in controlling sexual behavior in male animals, in: Psychopharmacology, Sexual Disorders and Drug Abuse (T. A. Ban, J. R. Boissier, G. J. Gessa, H. Heimann, L. Hollister, H. E. Lehmann, I. Munkvad, Hannah Steinberg, F. Sulser, A. Sundwall, and O. Vinar, eds.), pp. 451–462, North-Holland Publishing Co., Amsterdam and London; Avicenum Czechoslovak Medical Press, Prague.Google Scholar
  141. Gessa, G. L., and Tagliamonte, A., 1974, Possible role of brain serotonin and dopamine in controlling male sexual behavior, in: Advances in Biochemical Psychopharmacology (E. Costa and M. Sandler, eds.), Vol. 11, pp. 217–228, Raven Press, New York.Google Scholar
  142. Gessa, G. L., Tagliamonte, A., Tagliamonte, P., and Brodie, B. B., 1970, Essential role of testosterone in the sexual stimulation induced by p-chlorophenylalanine in male animals, Nature (London) 227:616–617.Google Scholar
  143. Gessner, P. K., 1973, Antagonism of the tranylcypromine-meperidine interaction by chlorpromazine in mice, Eur. J. Pharmacol. 22:187–190.PubMedGoogle Scholar
  144. Gessner, P. K., and Soble, A. G., 1972, Antagonism by p-chlorophenylalanine of late tranylcypromine toxicity, J. Pharm. Pharmacol. 24:825–827.PubMedGoogle Scholar
  145. Gessner, P. K., and Soble, A. G., 1973, A study of the tranylcypromine-meperidine interaction: Effects of p-chlorophenylalanine and 1-5-hydroxytryptophan, J. Pharmacol. Exp. Ther. 186:276–287.PubMedGoogle Scholar
  146. Gessner, P. K., Khairallah, P. A., McIsaac, W. M., and Page, I. H., 1960, The relationship between the metabolic fate and pharmacological actions of serotonin, bufotenine and psilocybin, J. Pharmacol. Exp. Ther. 130:126–133.PubMedGoogle Scholar
  147. Gessner, P. K., Mcisaac, W. M., and Page, I. H., 1961, Pharmacological actions of some methoxyindolealkylamines, Nature (London) 190:179–180.Google Scholar
  148. Gey, K. F., and Pletscher, A., 1961, Activity of monoamine oxidase in relation to the 5-hydroxytrypamine and norepinephrine content of the rat brain, J. Neurochem. 6:239–243.PubMedGoogle Scholar
  149. Ghezzi, D., Samanin, R., Bernasconi, S., Tognoni, G., Gerna, M., and Garattini, S., 1973, Effect of thymoleptics on fenfluramine-induced depletion of brain serotonin in rats, Eur. J. Pharmacol. 24:205–210.PubMedGoogle Scholar
  150. Giacobini, E., and Kerpel-Fronius, S., 1970, Histochemical and biochemical correlations of monoamine oxidase activity in autonomic and sensory ganglia of the cat, Acta Physiol. Scand. 78:522–528.PubMedGoogle Scholar
  151. Gillespie, J. S., 1973, Uptake of noradrenaline by smooth muscle, Br. Med. Bull. 29:136–141.PubMedGoogle Scholar
  152. Gillespie, L., Terry, L. L., and Sjoerdsma, A., 1959, The application of a monoamine-oxidase inhibitor, I-phenyl-2-hydrazinopropane QB-516), to the treatment of primary hypertension, Am. Heart J. 58:1–12.PubMedGoogle Scholar
  153. Glassman, A. H., and Platman, S. R., 1969, Potentiation of a monoamine oxidase inhibitor by tryptophan, J. Psychiatr. Res. 7:83–88.PubMedGoogle Scholar
  154. Glavas, E., Stojanova, D., Trajkov, T., and Nikodijevic, B., 1965, On the hypotensive effect of tranylcypromine, Arch. Intern. Pharmacodyn. Ther. 155:381–387.Google Scholar
  155. Glenner, G. G., Burtner, H. J., and Brown, G. W., 1957, The histochemical demonstration of monoamine oxidase activity by tetrazolium salts, J. Histochem. Cytochem. 5:591–600.PubMedGoogle Scholar
  156. Goldberg, L. I., and Sjoerdsma, A., 1959, Effects of several monoamine oxidase inhibitors on the cardiovascular actions of naturally occurring amines in the dog, J. Pharmacol. Exp. Ther. 127:212–218.PubMedGoogle Scholar
  157. Gong, S. N. C., and Rogers, K. J., 1973, Role of brain monoamines in the fatal hyperthermia induced by pethidine or imipramine in rabbits pretreated with a mon-oamine oxidase inhibitor, Br. J. Pharmacol. 48:12–18.PubMedGoogle Scholar
  158. Goridis, C., and Neff, N. H., 1971a, Evidence for a specific monoamine oxidase associated with sympathetic nerves, Neuropharmacology 10:557–564.PubMedGoogle Scholar
  159. Goridis, C., and Neff, N. H., 1971b, Monoamine oxidase in sympathetic nerves: A transmitter specific enzyme type, Br. J. Pharmacol. 43:814–818.PubMedGoogle Scholar
  160. Goridis, C., and Neff, N. H., 1974, Selective localisation of monoamine oxidase forms in rat mesenteric artery, Biochem. Pharmacol. Suppl. (Pt. 1), pp. 106–109.Google Scholar
  161. Gorkin, V. Z., and Romanova, L. A., 1968, On the selective inhibition by some monoamine oxidase inhibitors of deamination of biogenic monoamines in vivo, Biochem. Pharmacol. 17:855–860.PubMedGoogle Scholar
  162. Govier, W. M., Howes, B. G., and Gibbons, A. J., 1953, The oxidative deamination of serotonin and other 3-(beta-aminoethyl)-indoles by monoamine oxidase and the effect of these compounds on the deamination of tyramine, Science 118:596–597.PubMedGoogle Scholar
  163. Grahame-Smith, D. G., 1971a, Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and 1-tryptophan, J. Neurochem. 18:1053–1066.PubMedGoogle Scholar
  164. Grahame-Smith, D. G., 1971b, Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by 1-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor, Br. J. Pharmacol. 43:856–864.PubMedGoogle Scholar
  165. Grahame-Smith, D. G., 1972, Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by 1-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor, Br. J. Pharmacol. 43:856–864.Google Scholar
  166. Grahame-Smith, D. G., and Green, A. R., 1974, The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition, Br. J. Pharmacol. 52:19–26.PubMedGoogle Scholar
  167. Gray, W. D., and Rauh, C. E., 1967, The anticonvulsant action of inhibitors of carbonic anhydrase: Relation to endogenous amines in brain, J. Pharmacol. Exp. Ther. 155:127–134.PubMedGoogle Scholar
  168. Gray, W. D., and Rauh, C. E., 1968, The anticonvulsant action of carbon dioxide:Interaction with reserpine and inhibitors of carbonic anhydrase, J. Pharmacol. Exp. Ther. 163:431–438.PubMedGoogle Scholar
  169. Gray, W. D., and Rauh, C. E., 1971, The relation between monoamines in brain and the anticonvulsant action of inhibitors of carbonic anhydrase, J. Pharmacol. Exp. Ther. 177:206–218.PubMedGoogle Scholar
  170. Gray, W. D., Rauh, G. E., Osterberg, A. C., and Lipchuck, L. M., 1958, The anticonvulsant actions of methazolamide (a carbonic anhydrase inhibitor) and diphenylhydantoin, J. Pharmacol. Exp. Ther. 124:144–160.Google Scholar
  171. Gray, W. D., Rauh, C. E., and Shanahan, R. W., 1963, The mechanism of the antagonistic action of reserpine on the anticonvulsant effect of inhibitors of carbonic anhydrase, J. Pharmacol. Exp. Ther. 139:350–360.PubMedGoogle Scholar
  172. Green, A. R., and Grahame-Smith, D. G., 1974, TRH potentiates behavioural changes following increased brain 5-hydroxytryptamine accumulation in rats, Nature (London) 251:524–526.Google Scholar
  173. Green, A. R., and Grahame-Smith, D. G., 1975, The effect of diphenylhydantoin on brain 5-hydroxytryptamine metabolism and function, Neuropharmacology 14:107–113.PubMedGoogle Scholar
  174. Green, H., and Erickson, R. W., 1962, Further studies with tranylcypromine (monoamine oxidase inhibitor) and its interaction with reserpine in rat brain, Arch. Intern. Pharmacodyn. Ther. 135:407–425.Google Scholar
  175. Green, H., and Sawyer, J. L., 1960, Correlation of tryptamine-induced convulsions in rats with brain tryptamine concentration (25762), Proc. Soc. Exp. Biol. Med. 104:153–155.PubMedGoogle Scholar
  176. Green, H., and Sawyer, J. L., 1966, Demonstration, characterization, and assay procedure of tryptophan hydroxylase in rat brain, Anal. Biochem. 15:53–64.PubMedGoogle Scholar
  177. Greenawalt, J. W., 1972, Localization of monoamine oxidase in rat liver mitochondria, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, eds.), pp. 207–226, Raven Press, New York.Google Scholar
  178. Gunn, J. A., 1935, Relations between chemical constitution, pharmacological actions, and therapeutic uses, in harmine group of alkaloids, Arch. Intern. Pharmacodyn. Ther. 50:379–396.Google Scholar
  179. Gunn, J. A., and Gurd, M. R., 1940, Action of some amines related to adrenaline. Cyclohexylalkylamines, J. Physiol. 97:453–470.PubMedGoogle Scholar
  180. Gylys, J. A., Muccia, P. M. R., and Taylor, M. K., 1963, Pharmacological and toxicological properties of 2-methyl-3-piperidinopyrazine, a new antidepressant, Ann. N. Y. Acad. Sci. 107:899–911.PubMedGoogle Scholar
  181. Haeusler, G., 1973, Activation of the central pathway of the baroreceptor reflex, a possible mechanism of the hypotensive action of clonidine, Naunyn-Schmiedebergs Arch. Pharmakol. 278:231–246.Google Scholar
  182. Haigler, H. J., and Aghajanian, G. K., 1974, Lysergic acid diethylamide and serotonin: A comparison of effects on serotonergic neurons and neurons receiving a serotonergic input, J. Pharmacol. Exp. Ther. 188:688–699.PubMedGoogle Scholar
  183. Halaris, A. E., Lovell, R. A., and Freedman, D. X., 1973, Effect of chlorimipramine on the metabolism of 5-hydroxytryptamine in the rat brain, Biochem. Pharmacol. 22:2200–2202.PubMedGoogle Scholar
  184. Hall, D. W. R., Logan, B. W., and Parsons, G. H., 1969, Further studies on the inhibition of monoamine oxidase M and B 9302 (clorgyline). I. Substrate specificity in various mammalian species, Biochem. Pharmacol. 18:1447–1454.PubMedGoogle Scholar
  185. Halliday, R. P., Davis, C. S., Heotis, J. P., Pals, D. T., Watson, E. J., and Bickerton, R. K., 1968, Allenic amines: A new class of nonhydrazine MAO inhibitors, J. Pharm. Sci. 57:430–433.PubMedGoogle Scholar
  186. Hamberger, B., Malmfors, T., Norberg, K.-A., and Sachs, C., 1964, Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals, studied with a histochemical method, Biochem. Pharmacol. 13:841–844.PubMedGoogle Scholar
  187. Hamon, M., Bourgoin, S., Morot-Gaudry, Y., and Glowinski, J., 1972, End product inhibition of scrotonin synthesis in the rat striatum, Nature (London) 237:184–187.Google Scholar
  188. Hamon, M., Bourgoin, S., and Glowinski, J., 1973, Feedback regulation of 5-HT synthesis in rat striatal slices, J. Neurochem. 20:1727–1745.PubMedGoogle Scholar
  189. Hartmann, E., 1968, On the pharmacology of dreaming sleep (the D state), J. Nero. Ment. Dis. 146:165–173.Google Scholar
  190. Hartmann, E., Bridwell, T. J., and Schildkraut, J. J., 1971, Alpha-methylparatyrosine and sleep in the rat, Psychopharmacologia 21:157–164.PubMedGoogle Scholar
  191. Heise, G. A., and Boff, E., 1960, Behavioral determination of time and dose parameters of monoamine oxidase inhibitors, J. Pharmacol. Exp. Ther. 129:155–162.PubMedGoogle Scholar
  192. Henning, M., and Rubenson, A., 1970, Central hypotensive effect of L-3,4-dihydroxypheny-lalanine in the rat, J. Pharm. Pharmacol. 22:553–560.PubMedGoogle Scholar
  193. Henning, M., and Rubenson, A., 1971, Effects of 5-hydroxytryptophan on arterial blood pressure, body temperature and tissue monoamines in the rat, Acta Pharmacol. Toxicol. 29:145–154.Google Scholar
  194. Henning, M., Rubenson, A., and Trolin, G., 1972, On the localization of the hypotensive effect of L-dopa, J. Pharm. Pharmacol. 24:447–451.PubMedGoogle Scholar
  195. Henriksen, S., Gonda, W., Cohen, H., Barchas, J., and Dement, W., 1970, The effect of monoamine oxidase inhibitor (Pargyline) on the central monoamine levels and sleep in the PCPA cat, Psychophysiology 7:321.Google Scholar
  196. Hess, S. M., and Doepfner, W., 1961, Behavioral effects and brain amine content in rats, Arch. Intern. Pharmacodyn. Ther. 134:89–99.Google Scholar
  197. Hess, S. M., Redfield, B. G., and Udenfriend, S., 1959, The effect of monoamine oxidase inhibitors and tryptophan on the tryptamine content of animal tissues and urine, J. Pharmacol. Exp. Ther. 127:178–181.PubMedGoogle Scholar
  198. Himwich, W. A., Davis, J. M., Forbes, D. J., Glisson, S. N., Magnusson, T., Stout, M. A., and Trusty, D. W., 1972, Indole metabolism and behavior in dog, Biol. Psychiatr. 4:51–63.Google Scholar
  199. Ho, B. T., Tansey, L. W., Balster, R. L., An, R., McIsaac, W. M., and Harris, R. T., 1970, Amphetamine analogs. II. Methylated phenethylamines, J. Med. Chem. 13:134–135.PubMedGoogle Scholar
  200. Hodge, J. V., Oates, J. A., and Sjoerdsma, A., 1964, Reduction of the central effects of tryptophan by a decarboxylase inhibitor, Clin. Pharmacol. Ther. 5:149–155.PubMedGoogle Scholar
  201. Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66:235–251.Google Scholar
  202. Hollister, L. E., and Friedhoff, A. J., 1966, Effects of 3,4-dimethoxyphenylethylamine in man, Nature (London) 210:1377–1378.Google Scholar
  203. Horita, A., 1958, Beta-phenylisopropylhydrazine, a potent and long acting monoamine oxidase inhibitor, J. Pharmacol. Exp. Ther. 122:176–181.PubMedGoogle Scholar
  204. Horita, A., 1967, Biochemistry and pharmacology of the monoamine oxidase inhibitors (hydrazines): Addendum, in: Psychopharmacological Agents, Vol. II (M. Gordon, ed.), pp. 523–532, Academic Press, New York and London.Google Scholar
  205. Horita, A., and Carino, M. A., 1970, Modification of the toxic actions of 1-tryptophan by pargyline and p-chlorophenylalanine, Biochem. Pharmacol. 19:1521–1524.Google Scholar
  206. Horita, A., and Gogerty, J. H., 1958, The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD, J. Pharmacol. Exp. Ther. 122:195–200.PubMedGoogle Scholar
  207. Horn, A. S., and Trace, R. C. A. M., 1974, Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic antidepressants into synaptosomes from serotoninergic neurones in rat brain homogenates, Br. J. Pharmacol. 51:399–403.PubMedGoogle Scholar
  208. Horwitz, D., Lovenberg, W., Engelman, K., and Sjoerdsma, A., 1964, Monoamine oxidase inhibitors, tyramine, and cheese, J. Am. Med. Assoc. 188:1108–1110.Google Scholar
  209. Hoyland, V. J., Shillito, E. E., and Vogt, M., 1970, The effect of parachlorophenylalanine on the behaviour of cats, Br. J. Pharmacol. 40:659–667.PubMedGoogle Scholar
  210. Hyttel, J., 1974, Effect of neuroleptics on the disappearance rate of [14C] labelled catecholamines formed from [14C] tyrosine in mouse brain, J. Pharm. Pharmacol. 26:588–596.PubMedGoogle Scholar
  211. Ito, A., and Schanberg, S. M., 1972, Central nervous system mechanisms responsible for blood pressure elevation induced by p-chlorophenylalanine, J. Pharmacol. Exp. Ther. 181:65–74.PubMedGoogle Scholar
  212. Iwata, H., Okamoto, H., and Kuramoto, I., 1974, Effect of lithium on serum tryptophan and brain serotonin in rats, Jpn. J. Pharmacol. 24:235–240.PubMedGoogle Scholar
  213. Jacob, J., and Simon, P., 1968, Effets pharmacologiques des inhibiteurs des monoamine oxidases, in: Monoamine Oxidase Inhibitors: Relationship Between Pharmacological and Clinical Effects (J. Cheymol and J. R. Boissier, eds.), pp. 33–47, Pergamon Press, London.Google Scholar
  214. Jacobs, B. L., 1974a, Effect of two dopamine receptor blockers on a serotonin-mediated behavioral syndrome in rats, Eur. J. Pharmacol. 27:363–366.PubMedGoogle Scholar
  215. Jacobs, B. L., 1974b, Evidence for the functional interaction of two central neurotransmitters, Psychopharmacologia 39:81–86.PubMedGoogle Scholar
  216. Jacobs, B. L., Henriksen, S. J., and Dement, W. C., 1972, Neurochemical bases of the PGO wave, Brain Res. 48:406–411.PubMedGoogle Scholar
  217. Jacobs, B. L., Eubanks, E. E., and Wise, W. D., 1974, Effect of indolealkylamine manipulations on locomotor activity in rats, Neuropharmacology 13:575–583.PubMedGoogle Scholar
  218. Jacobs, B. L., Mosko, S. S., and Trulson, M. E., 1975, The investigation of the role of serotonin in mammalian behavior, in: Neurobiology of Sleep and Memory (J. L. McGaugh, ed.), Academic Press, New York (in press).Google Scholar
  219. Jaitly, K. D., Robson, J. M., Sullivan, F. M., and Wilson, C., 1968a, The effects of amine oxidase inhibitors on ovulation, implantation and pregnancy, J. Reprod. Fertil. Suppl. 4, pp. 75–79.Google Scholar
  220. Jaitly, K. D., Robson, J. M., Sullivan, F. M., and Wilson, C., 1968b, Maintenance of pregnancy after implantation in hypophysectomized or ovariectomized mice treated with phenelzine derivatives, J. Endocrinol. 41:519–530.PubMedGoogle Scholar
  221. Jalfre, M., Ruch-Monachon, M.-A., and Haefely, W., 1974, Methods for assessing the interaction of agents with 5-hydroxytryptamine neurons and receptors in the brain, in: Advances in Biochemical Psychopharmacology, Vol 10 (E. Costa and M. Sandier, eds.), pp. 121–134, Raven Press, New York.Google Scholar
  222. Jansen, G. S. I. M., Vrensen, G. F. J. M., and van Kempen, G. M. J., 1974, Intracellular localization of phenol sulphotransferase in rat brain, J. Neurochem. 23:329–335.PubMedGoogle Scholar
  223. Jarrott, B., 1971, Occurrence and properties of monoamine oxidase in adrenergic neurons, J. Neurochem. 18:7–16.PubMedGoogle Scholar
  224. Jarrott, B., and Langer, S. Z., 1971, Changes in monoamine oxidase and catechol-o-methyl transferase activities after denervation of the nictitating membrane of the cat, J. Physiol. 212:549–559.PubMedGoogle Scholar
  225. Javoy, F., Acid, Y., Bouvet, D., and Glowinski, J., 1972, Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum, J. Pharm. col. Exp. Ther. 182:454–463.Google Scholar
  226. Javoy, F., Youdim, M. B. H., Agid, Y., and Glowinski, J., 1973, Early effects of monoamine oxidase inhibitors on dopamine metabolism and monoamine oxidase activity in the neostriatum of the rat, J. Neural Transm. 34:279–289.PubMedGoogle Scholar
  227. Jenner, F. A., Judd, A., and Parker, J., 1975, The effects of lithium, rubidium and caesium on the response of rats to tranylcypromine and α-methyl-p-tyrosine given separately or in combination, Br. J. Pharmacol. 54:233P-234P.PubMedGoogle Scholar
  228. Jobe, P. C., Picchioni, A. L., and Chin, L., 1973a, Role of brain norepinephrine in audiogenic seizure in the rat, J. Pharmacol. Exp. Ther. 184:1–10.PubMedGoogle Scholar
  229. Jobe, P. C., Picchioni, A. L., and Chin, L., 1973b, Role of brain 5-hydroxytryptamine in audiogenic seizure in the rat, Life Sci. 13:1–13.PubMedGoogle Scholar
  230. Jobe, P. C., Stull, R. E., and Geiger, P. F., 1974, The relative significance of norepinephrine, dopamine and 5-hydroxytryptamine in electroshock seizure in the rat, Neuropharmacology 13:961–968.PubMedGoogle Scholar
  231. Johnson, D. N., Funderburk, W. H., and Ward, J. W., 1971, Effects of fenfluramine on sleep-wakefulness in cats, Psychopharmacologia 20:1–9.PubMedGoogle Scholar
  232. Johnston, J. P., 1968, Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol. 17:1285–1297.PubMedGoogle Scholar
  233. Jonason, J., and Rutledge, C. O., 1969, Effects of reserpine, dopamine and nialamide on the synthesis of α-methylnoradrenaline, Eur. J. Pharmacol. 6:24–28.PubMedGoogle Scholar
  234. Jones, B. E., 1972, The respective involvement of noradrenaline and its deaminated metabolites in waking and paradoxical sleep: A neuropharmacological model, Brain Res. 39:121–136.PubMedGoogle Scholar
  235. Jori, A., Bonaccorsi, A., Valzelli, L., and Garattini, S., monoamine oxidase (MAO) inhibitors, Life Sci. 8:611–617.Google Scholar
  236. Jounela, A. J., 1970, Influence of phenelzine on the toxicity of some analgesics in mice, Ann. Med. Exp. Fenn. 48:261–265.PubMedGoogle Scholar
  237. Jounela, A. J., and Mattila, M. J., 1975, Effect of selective MAO inhibitors on the pethidine toxicity in rabbits, 6th International Congress of Pharmacology, July 20–25, Helsinki (Abstract).Google Scholar
  238. Jouvet, M., 1967, Mechanisms of the states of sleep: A neuropharmacological approach, in: Sleep and Altered States of Consciousness, Vol. 45, pp. 86–126, Williams & Wilkins, Baltimore.Google Scholar
  239. Jouvet, M., 1969, Biogenic amines and the states of sleep. Pharmacological and neurophysiological studies suggest a relationship between brain serotonin and sleep, Science 163:32–41.PubMedGoogle Scholar
  240. Jouvet, M., 1972, The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle, Rev. Physiol. 64:166–307.Google Scholar
  241. Jouvet, M., and Michel, F., 1959, Corrélations électromygraphiques du sommeil chez le chat décortique et mésencephalique chronique, C. R. Soc. Biol. 153:422–425.Google Scholar
  242. Jouvet, M., Vimont, P., and Delorme, F., 1965, Suppression elective du sommeil paradoxal chez le chat par les inhibiteurs de la monoamineoxydase, C. R. Soc. Biol. 159:1595–1599.Google Scholar
  243. Judd, A., Parker, J., and Jenner, F. A., 1975, The role of noradrenaline, dopamine and 5-hydroxytryptamine in the hyperactivity response resulting from the administration of tranylcypromine to rats pretreated with lithium or rubidium, Psychopharmacologia 42:73–77.PubMedGoogle Scholar
  244. Kakimoto, Y., and Armstrong, M. D., 1962, On the identification of octopamine in mammals, J. Biol. Chem. 237:422–427.PubMedGoogle Scholar
  245. Kalberer, F., Kreis, W., and Rutschmann, J., 1962, The fate of psilocin in rat, Biochem. Pharmacol. 11:261–269.PubMedGoogle Scholar
  246. Kalnins, I., and Rue, K. B., 1971, The role of hypothalamic monoamines in the central control of ovulation, Schweiz. Z. Gynaekol. Geburtshilfe 2:255–263.Google Scholar
  247. Kamberi, I. A., and de Vellis, J., 1975, Brain neurotransmitters and the secretions of gonadotropins and gonadotropin-releasing hormones, 6th International Congress of Pharmacology, July 20–25, Helsinki.Google Scholar
  248. Kannengiesser, M. H., Hunt, P., and Raynaud, J.-P., 1973, An in vitro model for the study of psychotropic drugs and as a criterion of antidepressant activity, Biochem. Pharmacol. 22:73–84.PubMedGoogle Scholar
  249. Katic, F., Lavery, H., and Lowe, R. D., 1972, The central action of clonidine and its antagonism, Br. J. Pharmacol. 44:779–787.PubMedGoogle Scholar
  250. Kaul, C. L., and Grewal, R. S., 1972, Antihypertensive and monoamine oxidase inhibitory activity of 3-amino-2-oxazolidinone (3AO) and its condensation product with 2-substi-tuted-3-formyl-4-oxo-(4H)pyridol (1,2-a) pyrimidines, Biochem. Pharmacol. 21:303–316.PubMedGoogle Scholar
  251. Kayaalp, S. O., Kaymekcalan, S., and Özer, A., 1968, Interaction between some cheeses and monoamine oxidase inhibitors, Arzneim.-Forsch. 18:1195–1198.Google Scholar
  252. Khazan, N., and Brown, P., 1970, Differential effects of three tricyclic antidepressants on sleep and REM sleep in the rat, Life Sci. 9(Pt. 1):279–284.PubMedGoogle Scholar
  253. Khazan, N., and Sawyer, C. H., 1964, Mechanisms of paradoxical sleep as revealed by neurophysiologic and pharmacologic approaches in the rabbit, Psychopharmacologia 5:457–466.PubMedGoogle Scholar
  254. King, C. D., and Jewett, R. E., 1968, Sleep in cats treated with a-methyl-p-tyrosine, Pharmacologist 10:160.Google Scholar
  255. Klingman, G. I., 1966, Monoamine oxidase activity of peripheral organs and sympathetic ganglia of the rat after immunosympathectomy, Biochem. Pharmacol. 15:1729–1736.Google Scholar
  256. Knapp, S., and Mandell, A. J., 1973, Short-and long-term lithium administration: Effects on the brain’s serotonergic biosynthetic systems, Science 180:645–647.PubMedGoogle Scholar
  257. Knoll, J., and Magyar, K., 1972, Some puzzling pharmacological effects of monoamine oxidase inhibitors, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, eds.), pp. 393–408, Raven Press, New York.Google Scholar
  258. Kobinger, W., 1958, Beeinflussung der Cardiazolkrampfschwelle durch veranderten 5-Hydroxytryptamingehalt des Zentralnervensystems, Arch. Exp. Pathol. Pharmakol. 233:559–566.Google Scholar
  259. Koe, B. K., and Weissman, A., 1968, The pharmacology of parachlorophenylalanine, a selective depletor of serotonin stores, in: Advances in Pharmacology, Vol. 6B (S. Garattini and P. A. Shore, eds.), pp. 29–47, Academic Press, New York and London.Google Scholar
  260. Koelle, G. B., and Valk, A. de T., 1954, Physiological implications of the histochemical localization of monoamine oxidase, J. Physiol. 126:434–447.PubMedGoogle Scholar
  261. Kopin, I. J., 1966, Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings, Pharmacol. Rev. 18:513–523.PubMedGoogle Scholar
  262. Kopin, I. J., Fischer, J. E., Musacchio, J., and Horst, W. D., 1964, Evidence for a false neurochemical transmitter as a mechanism for the hypotensive effect of monoamine oxidase inhibitors, Proc. Natl. Acad. Sci. U.S.A. 52:716–721.PubMedGoogle Scholar
  263. Kopin, I. J., Fischer, J. E., Musacchio, J. M., Horst, W. D., and Weise, V. K., 1965, “False neurochemical transmitters” and the mechanism of sympathetic blockade by monoamine oxidase inhibitors, J. Pharmacol. Exp. Ther. 147:186–193.PubMedGoogle Scholar
  264. Kordon, C., 1969, Effects of selective experimental changes in regional hypothalamic monoamine levels on superovulation in the immature rat, Neuroendocrinology 4:129–138.PubMedGoogle Scholar
  265. Kordon, C., and Glowinski, J., 1972, Role of hypothalamic monoaminergic neurones in the gonadotrophin release-regulating mechanisms, Neuropharmacology 11:153–162.PubMedGoogle Scholar
  266. Kordon, C., and Vassent, G., 1968, Effet de micro-injections intrahypothalamiques et intrahypophysaires d’un inhibiteur de la monoamine-oxydase sur (’ovulation provoquée chez la ratte impubere, C. R. Acad. Sci. 266:2473–2476.Google Scholar
  267. Kordon, C., Javoy, F., Vassent, G., and Glowinski, J., 1968, Blockade of superovulation in the immature rat by increased brain serotonin, Eur. J. Pharmacol. 4:169–174.PubMedGoogle Scholar
  268. Korduba, C. A., Veals, J., and Symchowicz, S., 1973, The effect of pheniramine and its structural analogues on 5-hydroxytryptamine in rat and mouse brain, Life Sci. 13:1557–1564.PubMedGoogle Scholar
  269. Koslow, S. H., and Schlumpf, M., 1974, Quantitation of adrenaline in rat brain nuclei and areas by mass fragmentography, Nature (London) 251:530–531.Google Scholar
  270. Labhsetwar, A. P., 1971a, Effects of serotonin on spontaneous ovulation: A theory for the dual hypothalamic control of ovulation, Acta Endocrinol. 68:334–344.PubMedGoogle Scholar
  271. Labhsetwar, A. P., 1971b, Effects of serotonin on spontaneous ovulation in rats, Nature (London) 229:203–204.Google Scholar
  272. Labhsetwar, A. P., 1972, Role of monoamines in ovulation: Evidence for a serotoninergic pathway for inhibition of spontaneous ovulation, J. Endocrinol. 54:269–275.PubMedGoogle Scholar
  273. Lader, M. H., Sakalis, G., and Tansella, M., 1970, Interactions between sympathomimetic amines and a new monoamine oxidase inhibitor, Psychopharmacologia 18:118–123.PubMedGoogle Scholar
  274. Lands, A. M., and Grant, J. I., 1952, The vasopressor action and toxicity of cyclohexylethylamine derivatives, J. Pharmacol. Exp. Ther. 106:341–345.PubMedGoogle Scholar
  275. Larsson, K., and Södersten, P., 1971, Lordosis behavior in male rats treated with estrogen in combination with tetrabenazine and nialamide, Psychopharmacologia 21:13–16.PubMedGoogle Scholar
  276. Lauer, J. W., Inskip, W. M., Bernsohn, J., and Zeller, A., 1958, Observations on schizophrenic patients after iproniazid and tryptophan, Arch. Neurol. Psychiatry 80:122–130.Google Scholar
  277. Laverty, R., 1973, The mechanisms of action of some antihypertensive drugs, Br. Med. Bull. 29:152–157.PubMedGoogle Scholar
  278. Lee, F. I., 1961, Imipramine overdosage-report of a fatal case, Br. Med. J. 1:338–339.PubMedGoogle Scholar
  279. Lehmann, A., 1967, Audiogenic seizures data in mice supporting new theories of biogenic amines mechanisms in the central nervous system, Life Sci. 6:1423–1431.PubMedGoogle Scholar
  280. Lessin, A. W., and Parkes, M. W., 1959, The effects of reserpine and other agents upon leptazol convulsions in mice, Br. J. Pharmacol. 14:108–111.Google Scholar
  281. Lichtensteiger, W., Mutzner, U., and Langemann, H., 1967, Uptake of 5-hydroxytryptamine and 5-hydroxytryptophan by neurons of the central nervous system normally containing catecholamines, J. Neurochem. 14:489–497.PubMedGoogle Scholar
  282. Lidbrink, P., Jonsson, G., and Fuxe, K., 1971, The effect of imipramine-like drugs and antihistamine drugs on uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons, Neuropharinacology 10:521–536.Google Scholar
  283. Lin, R. C., Neff, N. H., Ngai, S. H., and Costa, E., 1969, Turnover rates of serotonin and norepinephrine in brain of normal and pargyline-treated rats, Life Sci. 8:1077–1084.PubMedGoogle Scholar
  284. Lindsay, D., Poulson, E., and Robson, J. M., 1963, The effect of 5-hydroxytryptamine on pregnancy, J. Endocrinol. 26:85–96.Google Scholar
  285. Lindström, L. H., 1970, The effect of pilocarpine in combination with monoamine oxidase inhibitors, imipramine or desmethylimipramine on oestrous behaviour in female rats, Psychopharmacologia 17:160–168.PubMedGoogle Scholar
  286. Lippmann, W., 1968, Relationship between hypothalamic norepinephrine and serotonin and gonadotrophin secretion in the hamster, Nature (London) 218:173–174.Google Scholar
  287. Loeww, D., and Taeschler, M., 1965, Der Einfluss von tricyclischen Antidepressiva and Thioridazin auf das 5-Hydroxytryptophan (5-HTP)-Fieber des Kaninchens, Arch. Exp. Pathol. Pharmakol. 251:139.Google Scholar
  288. Loveless, A. H., and Maxwell, D. R., 1965, A comparison of the effects of imipramine, trimipramine, and some other drugs in rabbits treated with a monoamine oxidase inhibitor, Br. J. Pharmacol. 25:158–170.Google Scholar
  289. Lu, L. W., Wilson, A., Moore, R. H., and Domino, E. F., 1974, Correlation between brain N,N-dimethyltryptamine (DMT) levels and bar pressing behavior in rats: Effect of MAO inhibition, Pharmacologist 16:237.Google Scholar
  290. Luby, E. D., and Domino, E. F., 1961, Toxicity from large doses of imipramine and an MAO inhibitor in suicidal intent, J. Am. Med. Assoc. 177:68–69.Google Scholar
  291. Luttge, W. G., 1975, Stimulation of estrogen induced copulatory behavior in castrate male rats with the serotonin biosynthesis inhibitorp-chlorophenylalanine, Behav. Biol. 14:373–378.PubMedGoogle Scholar
  292. Lynes, T. E., 1966, Pargyline on blood pressure in spinal and decerebrate cats, J. Pharm. Pharmacol. 18:759–760.PubMedGoogle Scholar
  293. Macon, J. B., Sokoloff, L., and Glowinski, J., 1971, Feedback control of rat brain 5-hydroxytryptamine synthesis, J. Neurochem. 18:323–331.PubMedGoogle Scholar
  294. Malmnäs, C. O., 1973, Monoamine precursors and copulatory behavior in the male rat, Acta Physiol. Scand. (Suppl.) 395:47–68.Google Scholar
  295. Malmnäs, C. O., 1974, Opposite effects of serotonin and dopamine on copulatory activation in castrated male rats, in: Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds.) Vol. 11, pp. 243–248, Raven Press, New York.Google Scholar
  296. Malmnäs, C. O., and Meyerson, B. J., 1970, Monoamines and testosterone activated copulatory behaviour in the castrated male rat, Acta Pharmacol. 28:67.Google Scholar
  297. Malmnäs, C. O., and Meyerson, B. J., 1971, p-Chlorophenylalanine and copulatory behaviour in the male rat, Nature (London) 232:398–400.Google Scholar
  298. Mannisto, P., Nikki, P., and Rissanen, A., 1971, The toxicity of two MAO inhibitors combined with 5-HTP or L-DOPA in anaesthetized mice, Acta Pharmacol. Toxicol. 29:441–448.Google Scholar
  299. Mantegazzini, P., 1966, Pharmacological actions of indolealkylamines and precursor aminoacids on the central nervous system, in: Handbuch der experimentellen Pharmakooogse, Vol. 19 (O. Eichler and A. Farah, eds.), pp. 424–436, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  300. Marderosian, A. H. der, Pinkley, H. V., and Dobbins, M. F., 1968, Native use and occurrence of N,N-dimethyltryptamine in the leaves of Banisteriopsis rusbyana, Am. J. Pharm. 140:137–147.PubMedGoogle Scholar
  301. Maronde, R. F., and Haywood, L. J., 1963, Evaluation of the monoamine oxidase inhibitor, pargyline, as an antihypertensive agent. A. Clinical results, Ann. N. Y. Acad. Sci. 107:975–979.Google Scholar
  302. Marsden, C. A., and Curzon, G., 1974, Effects of lesions and drugs on brain tryptamine, J. Neurochem. 23:1171–1176.PubMedGoogle Scholar
  303. Martin, W. R., and Eades, C. G., 1970, The action of tryptamine on the dog spinal cord and its relationship to the agonistic actions of LSD-like psychotogens, Psychopharmacologia 17:242–257.PubMedGoogle Scholar
  304. Martin, W. R., and Sloan, J. W., 1970, Effects of infused tryptamine in man, Psychopharmacologia 18:231–237.PubMedGoogle Scholar
  305. Martin, W. R., Sloan, J. W., Christian, S. T., and Clements, T. H., 1972, Brain levels of tryptamine, Psychopharmacologia 24:331–346.PubMedGoogle Scholar
  306. Martin, W. R., Sloan, J. W., Buchwald, W. F., and Bridges, S. R., 1974, The demonstration of tryptamine in regional perfusates of the dog brain, Psychopharmacologia 37:189–198.PubMedGoogle Scholar
  307. Martin, W. R., Sloan, J. W., Buchwald, W. F., and Clements, T. H., 1975, Neurochemical evidence for tryptaminergic ascending and descending pathways in the spinal cord of the dogs, Psychopharmacologia 43:131–134.PubMedGoogle Scholar
  308. Matsumoto, J., and Jouvet, M., 1964, Effets de réserpine, DOPA et 5 HTP sur les deux états de sommeil, C. R. Soc. Biol. 158:2137–2140.Google Scholar
  309. Mattila, M. J., and Jounela, A. J., 1973, Effect of p-chlorophenylalanine on the interaction between phenelzine and pethidine in conscious rabbits, Biochem. Pharmacol. 22:1674–1676.PubMedGoogle Scholar
  310. Maxwell, D. R., Gray, W. R., and Taylor, E. M., 1961, Relative activity of some inhibitors of mono-amine oxidase in potentiating the action of tryptamine in vitro and in vivo, Br. J. Pharmacol. 17:310–320.Google Scholar
  311. Maxwell, M. H., 1963, Observations pertinent to antihypertensive mechanisms of MAO inhibitors using dl-serine isopropylhydrazine, Ann. N. Y. Acad. Sci. 107:993–1004.PubMedGoogle Scholar
  312. McCann, S. M., 1970, Neurohormonal correlates of ovulation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 29:1888–1894.Google Scholar
  313. McCann, S. M., and Moss, R. L., 1975, Putative neurotransmitters involved in discharging gonadotropin-releasing neurohormones and the action of LH-releasing hormone on the CNS, Life Sci. 16:833–852.PubMedGoogle Scholar
  314. McCauley, R., and Racker, E., 1973, Separation of two monoamine oxidases from bovine brain, Mol. Cell. Biochem. 1:73–81.PubMedGoogle Scholar
  315. McCkearney, J. W., 1968, The relative effects of d-amphetamine, imipramine and harmaline on tetrabenazine suppression of schedule-controlled behavior in the rat, J. Pharmacol. Exp. Ther. 159:429–440.Google Scholar
  316. Meek, J. L., Fuxe, K., and Carlsson, A., 1971, Blockade of p-chloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine, Biochem. Pharmacol. 20:707–709.PubMedGoogle Scholar
  317. Meyer, H., and Frey, H.-H., 1973, Dependence of anticonvulsant drug action on central monoamines, Neuropharmacology 12:939–947.PubMedGoogle Scholar
  318. Meyerson, B. J., 1964a, Estrus behaviour in spayed rats after estrogen or progesterone treatment in combination with reserpine or tetrabenazine, Psychopharmacologia 6:210–218.PubMedGoogle Scholar
  319. Meyerson, B. J., 1964b, The effect of neuropharmacological agents on hormone-activated estrus behaviour in ovariectomised rats, Arch. Int. Pharmacodyn. Ther. 150:4–33.PubMedGoogle Scholar
  320. Meyerson, B. J., 1966, The effect of imipramine and related antidepressive drugs on estrus behaviour in ovariectomised rats activated by progesterone, reserpine or tetrabenazine in combination with estrogen, Acta Physiol. Scand. 67:411–422.PubMedGoogle Scholar
  321. Meyerson, B. J., 1968, Amphetamine and 5-hydroxytryptamine inhibition of copulatory behaviour in the female rat, Ann. Med. Exp. Fenn. 46:394–398.PubMedGoogle Scholar
  322. Meyerson, B. J., and Lewander, T., 1970, Serotonin synthesis inhibition and estrous behavior in female rats, Life Sci. 9(Pt. 1):661–671.Google Scholar
  323. Meyerson, B. J., and Sawyer, C. H., 1967, Monoamines and ovulation in the rat, Acta Pharmacol. Toxicol. 25(Suppl. 4):18–19.Google Scholar
  324. Meyerson, B. J., and Sawyer, C. H., 1968, Monoamines and ovulation in the rat, Endocrinology 83:170–176.PubMedGoogle Scholar
  325. Meyerson, B. J., Eliasson, M., Lindström, L., Michanek, A., and Söderlund, A. CH., 1973, Monoamines and female sexual behaviour, in: Psychopharmacology, Sexual Disorders and Drug Abuse (T. A. Ban, J. R. Boissier, G. J. Gessa, H. Heimann, L. Hollister, H. E. Lehmann, I. Munkvad, H. Steinberg, F. Sulser, A. Sundwall, and O. Vinar, eds.), pp. 463–472, North-Holland Publishing Co., Amsterdam and London; Avicenum, Czechoslovak Medical Press, Prague.Google Scholar
  326. Meyerson, B. J., Carrer, H., and Eliasson, M., 1974, 5-Hydroxytryptamine and sexual behavior in the female rat, in: Advances in Biochemical Psychopharmacology, Vol. 11 (E. Costa and P. Greengard, eds.), pp. 229–242, Raven Press, New York.Google Scholar
  327. Millard, S. A., Costa, E., and Gal, E. M., 1972, On the control of brain serotonin turnover rate by end product inhibition, Brain Res. 40:545–551.PubMedGoogle Scholar
  328. Mitchell, R. S., 1955, Fatal toxic encephalitis occurring during iproniazid therapy in pulmonary tuberculosis, Ann. Intern. Med. 42:417–424.PubMedGoogle Scholar
  329. Modigh, K., 1972, Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice, Psychopharmacologia 23:48–54.PubMedGoogle Scholar
  330. Modigh, K., 1973, Effects of chlorimipramine and protriptyline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice, J. Neural Transrn. 34:101–109.Google Scholar
  331. Modigh, K., and Svensson, T. H., 1972, On the role of central nervous system catecholamines and 5-hydroxytryptamine in the nialamide-induced behavioural syndrome, Br. J. Pharmacol. 46:32–45.PubMedGoogle Scholar
  332. Molinoff, P., and Axelrod, J., 1969, Octopamine: Normal occurrence in sympathetic nerves of rats, Science 164:428–429.PubMedGoogle Scholar
  333. Molinoff, P. B., and Axelrod, J., 1972, Distribution and turnover of octopamine in tissues, J. Neurochem. 19:157–163.PubMedGoogle Scholar
  334. Molinoff, P. B., Landsberg, L., and Axelrod, J., 1969, An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines, J. Pharmacol. Exp. Ther. 170:253–261.PubMedGoogle Scholar
  335. Monachon, M.-A., Burkard, W. P., Jalfre, M., and Haefely, W., 1972, Blockade of central 5-hydroxytryptamine receptors by methiothepin, Naunyn-Schmiedebergs Arch. Pharmacol. 274:192–197.PubMedGoogle Scholar
  336. Moore, R. H., Demetriou, S. K., and Domino, E. F., 1975, Effects of iproniazid, chlorpromazine and methiothepin on DMT-induced changes in body temperature, pupillary dilatation, blood pressure and EEG in the rabbit, Arch. Intern. Pharmacodyn. Ther. 213:64–72.Google Scholar
  337. Moser, M., Brodoff, B., Miller, A., and Goldman, A. G., 1964, Pargyline treatment of hypertension: Experience with a nonhydrazine amine oxidase inhibitor, J. Am. Med. Assoc. 187:192–195.Google Scholar
  338. Mouret, J., Vilppula, A., Franchon, N., and Jouvet, M., 1968, Effets d’un inhibiteur de la monoamine oxydase sur le sommeil du rat, C. R. Soc. Biol. 162:914–917.Google Scholar
  339. Mustala, O. O., and Jounela, A. J., 1966, Influence of pargyline on the toxicity of morphine and pethidine in mice, Ann. Med. Exp. Fenn. 44:395–396.PubMedGoogle Scholar
  340. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase: The initial step in norepinephrine biosynthesis, J. Biol. Chem. 239:2910–2917.PubMedGoogle Scholar
  341. Neff, N. H., and Costa, E., 1966, The influence of monoamine oxidase inhibition on catecholamine syntheses, Life Sci. 5:951–959.PubMedGoogle Scholar
  342. Neff, N. H., and Goridis, C., 1972, Neuronal monoamine oxidase: Specific enzyme types and their rates of formation, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and P. Greengard, eds.), pp. 307–323, Raven Press, New York.Google Scholar
  343. Neff, N. H., Yang, H.-Y. T., and Goridis, C., 1974, Degradation of the transmitter amines by specific types of monoamine oxidase, Biochem. Pharmacol. Suppl., pp. 86–90.Google Scholar
  344. Neidle, A., van den Berg, C. J., and Grynbaum, A., 1969, The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients, J. Neurochem. 16:225–234.PubMedGoogle Scholar
  345. Nybäck, H., Sedvall, G., and Kopin, I. J., 1967, Accelerated synthesis of dopamine-C14 from tyrosine-C14 in rat brain after chlorpromazine, Life Sci. 6:2307–2312.PubMedGoogle Scholar
  346. Nybäck, H., Borzecki, Z., and Sedvall, G., 1968, Accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain: Effect of some psychotropic drugs, Eur. J. Pharmacol. 4:395–403.PubMedGoogle Scholar
  347. Nybäck, H., Schubert, J., and Sedvall, G., 1970, Effect of apomorphine and pimozide on synthesis and turnover of labelled catecholamines in mouse brain, J. Pharm. Pharmacol. 22:622–624.PubMedGoogle Scholar
  348. Nymark, M., and Møller Nielsen, I., 1963, Reactions due to the combination of monoami-neoxidase inhibitors with thymoleptics, pethidine, or methylamphetamine, Lancet 2:524–525.PubMedGoogle Scholar
  349. Oates, J. A., and Sjoerdsma, A., 1960, Neurologic effects of tryptophan in patients receiving a monoamine oxidase inhibitor, Neurology 10:1076–1078.PubMedGoogle Scholar
  350. Obianwu, H. O., 1969, Possible functional differentiation between the stores from which adrenergic nerve stimulation, tyramine and amphetamine release noradrenaline, Acta Physiol. Scand. 75:92–101.PubMedGoogle Scholar
  351. O’Dea, K., and Rand, M. J., 1969, Interaction between amphetamine and monoamine oxidase inhibitors, Eur. Pharmacol. J. 6:115–120.Google Scholar
  352. Olsson, S. O., and Schrold, J., 1971, A comparison of FG 5310, a new selective monoamine oxidase inhibitor, and other MAO inhibitors on the blood pressure response to tyramine, Acta Pharmacol. Toxicol. 29(Suppl. 4):51.Google Scholar
  353. Orvis, H. H., Tamagna, I. G., and Thomas, R. E., 1959, Evaluation of 2 monoamine oxidase inhibitors (iproniazid and JB 516) in the therapy of arterial hypertension, Am. J. Med. Sci. 238:336–342.PubMedGoogle Scholar
  354. Orvis, H. H., Tamagna, I. G., Horwitz, D., and Thomas, R., 1963, Correlation of hypotensive effects and urinary tryptamine levels during pargyline therapy, Ann. N. Y. Acad. Sci. 107:958–963.PubMedGoogle Scholar
  355. O’Steen, W. K., 1964, Serotonin suppression of luteinization in gonadotrophin-treated, immature rats, Endocrinology 74:885–888.PubMedGoogle Scholar
  356. O’Steen, W. K., 1965, Suppression of ovarian activity in immature rats by serotonin, Endocrinology 77:937–939.PubMedGoogle Scholar
  357. Osumi, S., and Fujiwara, M., 1969, Tissue distribution of exogenously administered, and endogenously accumulated octopamine in rats, Jpn. J. Pharmacol. 19:185–193.PubMedGoogle Scholar
  358. Oswald, I., 1968, Drugs and sleep, Pharmacol. Rev. 20:273–303.PubMedGoogle Scholar
  359. Oswald, I., 1969, Human brain protein, drugs and dreams, Nature (London) 223:893–897.Google Scholar
  360. Owman, C., and Rosengren, E., 1967, Dopamine formation in brain capillaries-an enzymic blood-brain barrier mechanism, J. Neurochem. 14:547–550.PubMedGoogle Scholar
  361. Oxenkrug, G. F., 1973, Similarity between the effects of dimethyl and monomethyl tricyclic drugs on reserpine effects in the frog and 5-hydroxytryptamine uptake by human blood platelets, J. Pharm. Pharmacol. 25:1013–1015.PubMedGoogle Scholar
  362. Pachter, I. J., Zacharias, D. E., and Ribeiro, O., 1959, Indole alkaloids ofAcersaccharinum (the silver maple), Dictyoloma incanescens, Piptadenia colubrina, and Mimosa hostilis, J. Org. Chem. 24:1285–1287.Google Scholar
  363. Palm, D., and Magnus, U., 1967, Hemmung der Monoaminoxydase (MAO) and Diaminoxydase (DAO) Burch Furazolidon (Furoxon) im Tierand Selbstversuch, Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 257:319–320.Google Scholar
  364. Palmer, H., 1960, Potentiation of pethidine, Br. Med. J. 2:944.Google Scholar
  365. P’an, S. Y., Funderburk, W. H., and Finger, K. F., 1961, Anticonvulsant effect of nialamide and diphenylhydantoin, Proc. Soc. Exp. Biol. Med. 108:680–683.PubMedGoogle Scholar
  366. Papp, C., and Benaim, S., 1958, Toxic effects of iproniazid in a patient with angina, Br. Med. J. 2:1070–1072.PubMedGoogle Scholar
  367. Passouant, P., Cadilhac, J., Billiard, M., and Besset, A., 1973, La suppression du sommeil paradoxal par la clomipramine, Therapie 28:379–392.PubMedGoogle Scholar
  368. Patane, S., and Arrigo Reina, R., 1970, Azione inibente di alcuni derivati del pirazolinone sulla inattivazione metabolica della 5-idrossitriptamina. Azione di alcuni derivati del pirazolinone sull “attivita” pressoria della tiramina, Boll. Soc. Ital. Biol. Sper. 45:1079–1083.Google Scholar
  369. Penn, R. G., and Rogers, K. J., 1971, Comparison of the effects of morphine, pethidine and pentazocine in rabbits pretreated with a monoamine oxidase inhibitor, Br. J. Pharmacol. 42:485–492.PubMedGoogle Scholar
  370. Pennes, H. H., and Hoch, P. H., 1957, Psychotomimetics, clinical and theoretical considerations: Harmine, win-2299 and nalline, Am. J. Psychiatry 113:887–892.PubMedGoogle Scholar
  371. Perez-Cruet, J., Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1971, Stimulation of serotonin synthesis by lithium, J. Pharmacol. Exp. Ther. 178:325–330.PubMedGoogle Scholar
  372. Pettinger, W. A., and Oates, J. A., 1968, Supersensitivity to tyramine during monoamine oxidase inhibition in man. Mechanism at the level of the adrenergic neuron, Clin. Pharmacol. Ther. 9:341–344.PubMedGoogle Scholar
  373. Pfeifer, A. K., and Galambos, E., 1967, The effect of reserpine a-methyl-m-tyrosine, prenylamine, and guanethidine on metrazol-convulsions and the brain monoamine level in mice, Arch. Intern. Pharmacodyn. Ther. 165:201–211.Google Scholar
  374. Philips, S. R., Durden, D. A., and Boulton, A. A., 1974, Identification and distribution of tryptamine in the rat, Can. J. Biochem. 52:447–451.PubMedGoogle Scholar
  375. Pletscher, A., 1957, Wirkung von Isopropyl-isonicotinsaure-hydrazid auf den Stoffwechsel von Catecholaminen and 5-Hydroxytryptamin im Gehirn, Schweiz. Med. Wochenschr. 87:1532–1534.PubMedGoogle Scholar
  376. Pletscher, A., Besendorf, H., Bachtold, H. P., and Gey, K. F., 1959, Uber pharmakologische Beeinflussung des Zentralnervensystems durch kurzwirkende Monoaminoxydasehemmer aus der Gruppe der Harmala-Alkaloide, Helv. Physiol. Acta 17:202–214.Google Scholar
  377. Plotnikoff, N., Huang, J., and Havens, P., 1963, Effect of monoamino oxidase inhibitors on audiogenic seizures, J. Pharm. Sci. 52:172–173.PubMedGoogle Scholar
  378. Plummer, A. J., and Furness, P. A., 1963, Biological estimation of the intensity and duration of action of monoamine oxidase inhibitors, Ann. N. Y. Acad. Sci. 107:865–877.PubMedGoogle Scholar
  379. Poitou, P., Guerinot, F., and Bohuon, C., 1974, Effect of lithium on central metabolism of 5-hydroxytryptamine, Psychopharmacologia 38:75–80.PubMedGoogle Scholar
  380. Poulson, E., and Robson, J. M., 1963, The effect of amine oxidase inhibitors on pregnancy, J. Endocrinol. 27:147–152.PubMedGoogle Scholar
  381. Poulson, E., and Robson, J. M., 1964, Effect of phenelzine and some related compounds on pregnancy and on sexual development, J. Endocrinol. 30:205–215.PubMedGoogle Scholar
  382. Prockop, D. J., Shore, P. A., and Brodie, B. B., 1959a, An anticonvulsant effect of monoamine oxidase inhibitors, Experientia 15:145–147.PubMedGoogle Scholar
  383. Prockop, D. J., Shore, P. A., and Brodie, B. B., 1959b, Anticonvulsant properties of monoamine oxidase inhibitors, Ann. N. Y. Acad. Sci. 80:643–651.PubMedGoogle Scholar
  384. Przuntek, H., Guimãraes, S., and Philippu, A., 1971, Importance of adrenergic neurons of the brain for the rise of blood pressure evoked by hypothalamic stimulation, Naunyn-Schmiedebergs Arch. Pharmakol. 271:311–319.PubMedGoogle Scholar
  385. Pscheidt, G. R., 1964, Monoamine oxidase inhibitors, in: International Review of Neurobiology, Vol. 7 (Carl C. Pfeiffer and J. R. Smythies, eds.), pp. 191–229, Academic Press, New York and London.Google Scholar
  386. Pujol, J.-F., Buguet, A., Froment, J.-L., Jones, B., and Jouvet, M., 1971, The central metabolism of serotonin in the cat during insomnia. A neurophysiological and biochemical study after administration of p-chlorophenylalanine or destruction of the raphe system, Brain Res. 29:195–212.PubMedGoogle Scholar
  387. Rand, M. J., and Trinker, F. R., 1968, The mechanism of the augmentation of responses to indirectly acting sympathomimetic amines by monoamine oxidase inhibitors, Br. J. Pharmacol. Chemother. 33:287–303.PubMedGoogle Scholar
  388. Randall, L. O., and Bagdon, R. E., 1959, Pharmacology of iproniazid and other amine oxidase inhibitors, Ann. N. Y. Acad. Sci. 80:626–636.PubMedGoogle Scholar
  389. Randrup, A., and Munkvad, I., 1966, Dopa and other naturally occurring substances as causes of stereotypy and rage in rats, Acta Psychiatr. Scand. Suppl. 191, pp. 193–199.PubMedGoogle Scholar
  390. Randrup, A., and Munkvad, I., 1970, Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamines, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 695–713, Raven Press, New York.Google Scholar
  391. Reite, M., Ingram, G. V., Stephens, L. M., Bixler, E. C., and Lewis, O. L., 1969, The effect of reserpine and monoamine oxidase inhibitors on paradoxical sleep in the monkey, Psychopharmacologia 14:12–17.PubMedGoogle Scholar
  392. Renton, K. W., and Eade, N. R., 1972, Microsomal enzymes and potentiation of tyramine pressor response, Biochem. Pharmacol. 21:1393–1402.PubMedGoogle Scholar
  393. Robinson, N., 1967, Histochemistry of monoamine oxidase in the developing rat brain, J. Neurochem. 14:1083–1089.PubMedGoogle Scholar
  394. Robinson, N., 1968, Histochemistry of rat brain stem monoamine oxidase during maturation, J. Neurochem. 15:1151–1158.PubMedGoogle Scholar
  395. Robinson, N., 1972, Enzyme histochemistry of the rat hypothalamus during early development, J. Neurochem. 19:1577–1585.PubMedGoogle Scholar
  396. Robson, J. M., and Botros, M., 1961, The effect of 5-hydroxytryptamine and of monoamine oxidase inhibitors on sexual maturity, J. Endocrinol. 22:165–175.PubMedGoogle Scholar
  397. Rogers, K. J., 1971, Role of brain monoamines in the interaction between pethidine and tranylcypromine, Eur. J. Pharmacol. 14:86–88.PubMedGoogle Scholar
  398. Rogers, K. J., and Thornton, J. A., 1969, The interaction between monoamine oxidase inhibitors and narcotic analgesics in mice, Br. J. Pharmacol. 36:470–480.PubMedGoogle Scholar
  399. Ross, S. B., and Renyi, A. L., 1975, Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of 3H-noradrenaline and 14C-5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain, Acta Pharmacol. Toxicol. 36:382–394.Google Scholar
  400. Ross, S. B., Renyi, A. L., and Ögren, S.-O., 1972, Inhibition of the uptake of noradrenaline and 5-hydroxytryptamine by chlorphentermine and chlorimipramine, Eur. J. Pharmacol. 17:107–112.PubMedGoogle Scholar
  401. Roth, R. H., and Stone, E. A., 1968, The action of reserpine on noradrenaline biosynthesis in sympathetic nerve tissue, Biochem. Pharmacol. 17:1581–1590.PubMedGoogle Scholar
  402. Ruch-Monachon, M.-A., Jalfre, M., and Haefely, W. E., 1975a, Drugs and PGO waves in the lateral geniculate body of the curarized cat. I. PGO wave activity induced by Ro 4-1284 and byp-chlorophenylalanine (PCPA) as a basis for neuropharmacological studies, Arch. Int. Pharmacodyn. Ther. 219:251–268.Google Scholar
  403. Ruch-Monachon, M.-A., Jalfre, M., and Haefely, W., 1975b, Drugs and PGO waves in the lateral geniculate body of the curarized cat. II. PGO wave activity and brain 5-hydroxytryptamine, Arch. Int. Pharmacodyn. Ther. 219:269–286.Google Scholar
  404. Ruch-Monachon, M.-A., Jalfre, M., and Haefely, W., 1975c, Drugs and PGO waves in the lateral geniculate body of the curarized cat. III. PGO wave activity and brain catechola-mines, Arch. Int. Pharmacodyn. Ther. 219:287–307.Google Scholar
  405. Ruch-Monachon, M.-A., Jalfre, M., and Haefely, W., 1975d, Drugs and PGO waves in the lateral geniculate body of the curarized cat. IV. The effects of acetylcholine, Gaba, and benzodiazepines on PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219:308–325.Google Scholar
  406. Ruch-Monachon, M.-A., Jalfre, M., and Haefely, W., 1975e, Drugs and PGO waves in the lateral geniculate body of the curarized cat. V. Miscellaneous compounds. Synopsis of the role of central neurotransmitters on PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219:326–346.Google Scholar
  407. Rudzik, A. D., and Mennear, J. H., 1965, The mechanism of action of anticonvulsants. I. Diphenylhydantoin, Life Sci. 4:2373–2382.PubMedGoogle Scholar
  408. Rudzik, A. D., and Mennear, J. H., 1966, The mechanism of action of anticonvulsants. II. Acetazolamide, Life Sci. 5:747–756.PubMedGoogle Scholar
  409. Saavedra, J. M., 1974, Enzymatic-isotopic method for octopamine at the picogram level, Anal. Biochem. 59:628–633.PubMedGoogle Scholar
  410. Saavedra, J. M., and Axelrod, J., 1973, Effect of drugs on the tryptamine content of rat tissues, J. Pharmacol. Exp. Ther. 185:523–529.PubMedGoogle Scholar
  411. Saavedra, J. M., and Axelrod, J., 1974a, Brain tryptamine and the effects of drugs, in: Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds.), Vol. 10, pp. 135–139, Raven Press, New York.Google Scholar
  412. Saavedra, J. M., and Axelrod, J., 1974b, Developmental characteristics of phenylethanolamine and octopamine in the rat brain, J. Neurochem. 23:511–515.PubMedGoogle Scholar
  413. Saavedra, J. M., Palkovits, M., Brownstein, M. J., and Axelrod, J., 1974, Localisation of phenylethanolamine N-methyl transferase in the rat brain nuclei, Nature (London) 248:695–696.Google Scholar
  414. Sabelli, H. C., and Mosnaim, A. D., 1974, Phenylethylamine hypothesis of affective behavior, Am. J. Psychiatry 131:695–699.PubMedGoogle Scholar
  415. Sabelli, H. C., Vazquez, A. J., and Flavin, D., 1975, Behavioral and electrophysiological effects of phenylethanolamine and 2-phenylethylamine, Psychopharmacologia 42:117–125.PubMedGoogle Scholar
  416. Sachs, C., 1970, Noradrenaline Uptake Mechanisms. A Biochemical and Histochemical Study, Department of Histology, Karolinske Institutet, Stockholm, Sweden.Google Scholar
  417. Salis, P. J., and Dewsbury, D. A., 1971, p-Chlorophenylalanine facilitates copulatory behaviour in male rats, Nature (London) 232:400–401.Google Scholar
  418. Sanders, F., and Bush, M. T., 1967, Distribution, metabolism and excretion of bufotenine in the rat with preliminary studies of its o-methyl derivative, J. Pharmacol. Exp. Ther. 158:340–352.PubMedGoogle Scholar
  419. Sanghvi, I., and Gershon, S., 1970, Similarities between behavioral and pharmacological actions of yohimbine and 5-hydroxytryptophan in the conscious dog, Eur. J. Pharmacol. 11:125–129.PubMedGoogle Scholar
  420. Sansone, M., and dell’Omodarme, G., 1963, Influence de l’isocarboxazide (marplan) et de deux nouveaux inhibiteurs de la MAO sur les convulsions cloniques et sur la mortalite per metrazol, Arch. Intern. Pharmacodyn. Ther. 144:392–398.Google Scholar
  421. Scheel-Krüger, J., and Jonas, W., 1973, Pharmacological studies on tetrabenazine-induced excited behaviour of rats pretreated with amphetamine or nialamide, Arch. Intern. Pharmacodyn. Ther. 206:47–65.Google Scholar
  422. Schlesinger, K., Boggan, W., and Freedman, D. X., 1968a, Genetics of audiogenic seizures. II. Effects of pharmacological manipulation of brain serotonin, norepinephrine and gamma-aminobutyric acid, Life Sci. 7(Pt. I):437–447.PubMedGoogle Scholar
  423. Schlesinger, K., Boggan, W. O., and Griek, B. J., 1968b, Pharmacogenetic correlates of pentylenetetrazol and electroconvulsive seizure thresholds in mice, Psychopharmacologia 13:181–188.PubMedGoogle Scholar
  424. Schmitt, H., Schmitt, H., and Fenard, S., 1971, Evidence for an α-sympathomimctic component in the effects of catapresan on vasomotor centres: Antagonism by piperoxane, Eur. J. Pharmacol. 14:98–100.PubMedGoogle Scholar
  425. Schnaitman, C., and Greenawalt, J. W., 1968, Enzymatic properties of the inner and outer membranes of rat liver mitochondria, J. Cell Biol. 38:158–175.PubMedGoogle Scholar
  426. Schoepke, H. G., and Swett, L. R., 1967, Chemistry and pharmacology of monoamine oxidase inhibitors, in: Antihypertensive Agents (E. Schlittler, ed.), pp. 393–428, Academic Press, New York and London.Google Scholar
  427. Schoepke, H. G., and Wiegand, R. G., 1963, Relation between norepinephrine accumulation or depletion and blood pressure responses in the cat and rat following pargyline administration, Ann. N. Y. Acad. Sci. 107:924–934.PubMedGoogle Scholar
  428. Schubert, J., 1973, Effect of chronic lithium treatment on monoamine metabolism in rat brain, Psychopharmacologia 32:301–311.PubMedGoogle Scholar
  429. Schweitzer, J. W., and Friedhoff, A. J., 1968, The metabolism of dimethoxyphenethyla-mine, a compound found in the urine of schizophrenics, Am. J. Psychiatry 124:1249–1253.PubMedGoogle Scholar
  430. Shaskan, E. G., and Snyder, S. H., 1970, Kinetics of serotonin accumulation into slices from rat brain: Relationship to catecholamine uptake, J. Pharmacol. Exp. Ther. 175:404–418.PubMedGoogle Scholar
  431. Sheard, M. H., 1969, The effect of p-chlorophenylalanine on behavior in rats: Relation to brain serotonin and 5-hydroxyindoleacetic acid, Brain Res. 15:524–528.PubMedGoogle Scholar
  432. Sheard, M. H., 1974, The effect of p-chloroamphetamine on single raphe neurons, in: Advances in Biochemical Psychopharmacology, Vol. 10 (E. Costa and P. Greengard, eds.), pp. 179–184, Raven Press, New York.Google Scholar
  433. Sheard, M. H., and Aghajanian, G. K., 1970, Neuronally activated metabolism of brain serotonin: Effect of lithium, Life Sci. 9(Pt. I):285–290.PubMedGoogle Scholar
  434. Sheard, M. H., Zolovick, A., and Aghajanian, G. K., 1972, Raphe neurons: Effect of tricyclic antidepressant drugs, Brain Res. 43:690–694.PubMedGoogle Scholar
  435. Shee, J. C., 1960, Dangerous potentiation of pethidine by iproniazid, and its treatment, Br. Med. J. 2:507–509.PubMedGoogle Scholar
  436. Shillito, E. E., 1970, The effect of parachlorophenylalanine on social interaction of male rats, Br. J. Pharmacol. 38:305–315.PubMedGoogle Scholar
  437. Shimizu, N., Morikawa, N., and Okada, M., 1959, Histochemical studies of monoamine oxidase of the brain of rodents, Z. Zellforsch. 49:389–400.Google Scholar
  438. Shore, P. A., and Brodie, B. B., 1957, LSD-like effects elicited by reserpine in rabbits pretreated with iproniazid (22968), Proc. Soc. Exp. Biol. Med. 94:433–435.PubMedGoogle Scholar
  439. Shulgin, A. T., Sargent, T., and Naranjo, C., 1966, Role of 3,4-dimethoxyphenethylamine in schizophrenia, Nature (London) 212:1606–1607.Google Scholar
  440. Shulgin, A. T., Sargent, T., and Naranjo, C., 1969, Structure-activity relationships of one-ring psychotomimetics, Nature (London) 221:537–541.Google Scholar
  441. Shulgin, A. T., Sargent, T., and Naranjo, C., 1971, 4-Bromo-2,5-dimethoxyphenylisopro-pylamine, a new centrally active amphetamine analog, Pharmacology 5:103–107.PubMedGoogle Scholar
  442. Sinclair, J. G., 1972a, The effects of meperidine and morphine in rabbits pretreated with phenelzine, Toxicol. Appl. Pharmacol. 22:231–240.PubMedGoogle Scholar
  443. Sinclair, J. G., 1972b, Ethoheptazine-monoamine oxidase inhibitor interaction in rabbits, Can. J. Physiol. Pharmacol. 50:923–926.PubMedGoogle Scholar
  444. Sinclair, J. G., 1972c, Antihistamine-monoamine oxidase inhibitor interaction in rabbits, J. Pharm. Pharmacol. 24:955–961.PubMedGoogle Scholar
  445. Sinclair, J. G., 1973, Dextromethorphan-monoamine oxidase inhibitor interaction in rabbits, J. Pharm. Pharmacol. 25:803–808.PubMedGoogle Scholar
  446. Singh, H., 1960, Atropine-like poisoning due to tranquilizing agents, Am. J. Psychiatry 117:360–361.Google Scholar
  447. Sinha, J. N., Dhasmana, K. M., Dixit, K. S., and Bhargava, K. P., 1969, Antagonism of imipramine induced fatal hyperpyrexia in MAO inhibitor treated rabbits, Jpn. J. Pharmacol. 19:623–625.PubMedGoogle Scholar
  448. Sjoerdsma, A., Gillespie, L., and Udenfriend, S., 1959a, A method for measurement of monoamine oxidase inhibition in man: Application to studies on hypertension, N. Y. Acad. Sci. 80:969–980.Google Scholar
  449. Sjoerdsma, A., Lovenberg, W., Oates, J. A., Grout, J. R., and Udenfriend, S., 1959b, Alterations in the pattern of amine excretion in man produced by a monoamine oxidase inhibitor, Science 130:225.PubMedGoogle Scholar
  450. Sjoerdsma, A., Oates, J. A., Zaltzman, P., and Udenfriend, S., 1959c, Identification and assay of urinary tryptamine: Application as an index of monoamine oxidase inhibition in man, J. Pharmacol. Exp. Ther. 126:217–222.PubMedGoogle Scholar
  451. Slater, I. H., Jones, G. T., and Moore, R. A., 1974, Sleep studies with the specific inhibitor of serotonin uptake, 3-(p-trifluoromethylphenoxy)-n-methyl-3-phenylpropylamine hydrochloride, Lilly 110140, Association for the Psychophysiological Study of Sleep, June 6–9, Jackson Hole, Wyoming, 14th Annual meeting (Abstract).Google Scholar
  452. Sloan, J. W., Martin, W. R., Clements, T. H., Buchwald, W. F., and Bridges, S. R., 1975, Factors influencing brain and tissue levels of tryptamine: Species, drugs and lesions, J. Neurochem. 24:523–532.PubMedGoogle Scholar
  453. Smythies, J. R., Johnston, V. S., Bradley, R. J., Benington, F., Morin, R. D., and Clark, L. C., 1967, Some new behaviour-disrupting amphetamines and their significance, Nature (London) 216:128–129.Google Scholar
  454. Snodgrass, S. R., and Horn, A. S., 1973, An assay procedure for tryptamine in brain and spinal cord using its (3H) dansyl derivative, J. Neurochem. 21:687–696.PubMedGoogle Scholar
  455. Snodgrass, S. R., and Iversen, L. L., 1974, Formation and release of 3H-tryptamine from 3H-tryptophan in rat spinal cord slices, in: Advances in Biochemical Psychopharmacology, Vol. 10 (E. Costa and P. Greengard, eds.), pp. 141–150, Raven Press, New York.Google Scholar
  456. Snyder, S. H., Fischer, J., and Axelrod, J., 1965, Evidence for the presence of monoamine oxidase in sympathetic nerve endings, Biochem. Pharmacol. 14:363–365.Google Scholar
  457. Snyder, S. H., Weingartner, H., and Faillace, L. A., 1971, DOET (2,5-dimethoxy-4-ethylamphetamine), a new psychotropic drug. Effects of varying doses in man, Arch. Gen. Psychiatry 24:50–55.PubMedGoogle Scholar
  458. Spano, P. F., 1966, Potentiation of the noradrenaline-releasing action of tyramine by monoamine oxidase inhibitors, J. Pharm. Pharmacol. 18:548–549.PubMedGoogle Scholar
  459. Spector, S., 1963, Monoamine oxidase in control of brain serotonin and norepinephrine content, Ann. N. Y. Acad. Sci. 107:856–864.PubMedGoogle Scholar
  460. Spector, S., Prockop, D., Shore, P. A., and Brodie, B. B., 1958, Effect of iproniazid on brain levels of norepinephrine and serotonin, Science 127:704.Google Scholar
  461. Spector, S., Shore, P. A., and Brodie, B. B., 1960a, Biochemical and pharmacological effects of the monoamine oxidase inhibitors, iproniazid, 1-phenyl-2-hydrazinopropane UB 516) and 1-phenyl-3-hydrazinobutane J(B 835), J. Pharmacol. Exp. Ther. 128:15–21.PubMedGoogle Scholar
  462. Spector, S., Kuntzman, R., Shore, P. A., and Brodie, B. B., 1960b, Evidence for release of brain amines by reserpine in presence of monoamine oxidase inhibitors: Implication of monoamine oxidase in norepinephrine metabolism in brain, J. Pharmacol. Exp. Ther. 130:256–261.Google Scholar
  463. Spencer, J. N., Porter, M., Froehlich, H. L., and Wendel, H., 1960, Observations on the cardiovascular effects of tranylcypromine, Fed. Proc. Fed. Am. Soc. Exp. Biol. 19:277.Google Scholar
  464. Spoerlein, M. T., and Ellman, A. M., 1961, Facilitation of metrazol-induced seizures by iproniazid and beta phenylisopropylhydrazine in mice, Arch. Intern. Pharmacodyn. Ther. 133:193–199.Google Scholar
  465. Sprince, H., Parker, C. M., Jameson, D., and Alexander, F., 1963, Urinary indoles in schizophrenic and psychoneurotic patients after administration of tranylcypromine (parnate) and methionine or tryptophan, J. Nero. Ment. Dis. 137:246–251.Google Scholar
  466. Squires, R. F., 1968, Additional evidence for the existence of several forms of mitochondrial monoamine oxidase in the mouse, Biochem. Pharmacol. 17:1401–1409.PubMedGoogle Scholar
  467. Squires, R. F., 1971, On the decrease in concentration of 5-HIAA in rat brain by imipramine and related substances, Acta Pharmacol. Toxicol. 29(Suppl. 4):56.Google Scholar
  468. Squires, R., 1972a, Antagonism of p-chloroamphetamine (PCA) induced depletion of 5-HT from rat brain by some thymoleptics and other psychotropic drugs, Acta Pharmacol. Toxicol. 31(Suppl. 1):35.Google Scholar
  469. Squires, R. F., 1972b, Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: A comparison of eight mammalian species, in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and P. Greengard, eds.), pp. 355–370, Raven Press, New York.Google Scholar
  470. Squires, R. F., 1974, Effects of noradrenaline pump blockers on its uptake by synaptosomes from several regions; additional evidence for dopamine terminals in the frontal cortex, J. Pharm. Pharmacol. 26:364–367.PubMedGoogle Scholar
  471. Squires, R. F., 1975, Evidence that 5-methoxy-N,N-dimethyltryptamine is a specific substrate for MAO-A in the rat: Implications for the indolamine dependent behavioural syndrome, J. Neurochem. 24:47–50.PubMedGoogle Scholar
  472. Squires, R. F., and Buds Lassen, J., 1968, Some pharmacological and biochemical properties of y-morpholino-butyrophenone (NSD 2023), a new monoamine oxidase inhibitor, Biochem. Pharmacol. 17:369–384.PubMedGoogle Scholar
  473. Squires, R. F., and Buus Lassen, J., 1975, The inhibition of A and B forms of MAO in the production of a characteristic behavioural syndrome in rats after L-tryptophan loading, Psychopharmacologia 41:145–151.PubMedGoogle Scholar
  474. Stein, D., Jouvet, M., and Pujol, J.-F., 1974, Effects of α-methyl-p-tyrosine upon cerebral amine metabolism and sleep states in the cat, Brain Res. 72:360–365.PubMedGoogle Scholar
  475. Struyker Boudier, H. A. J., and Bekers, A., 1975, Adrenaline-induced cardiovascular changes after intrahypothalamic administration to rats, Eur. J. Pharmacol. 31:153–155.PubMedGoogle Scholar
  476. Struyker Boudier, H., Smeets, G., Brouwer, G., and van Rossum, J. M., 1975, Central nervous system α-adrenergic mechanisms and cardiovascular regulation in rats, Arch. Intern. Pharmacodyn. Ther. 213:285–293.Google Scholar
  477. Szara, S., 1956, Dimethyltryptamine: Its metabolism in man: the relation of its psychotic effect to the serotonin metabolism, Experientia 12:441–442.PubMedGoogle Scholar
  478. Szara, S., Rockland, L. H., Rosenthal, D., and Handlon, J. H., 1966, Psychological effects and metabolism of N,N-diethyltryptamine in man, Arch. Gen. Psychiatry 15:320–329.PubMedGoogle Scholar
  479. Tabakoff, B., Meyerson, L., and Alivisatos, S. G. A., 1974, Properties of monoamine oxidase in nerve endings from two bovine brain areas, Brain Res. 66:491–508.Google Scholar
  480. Taborsky, R. G., and McIsaac, W. M., 1964, The relationship between the metabolic fate and pharmacological action of 5-methoxy-N-methyltryptamine, Biochem. Pharmacol. 13:531–552.PubMedGoogle Scholar
  481. Tagliamonte, A., Tagliamonte, P., Gessa, G. L., and Brodie, B. B., 1969, Compulsive sexual activity induced by p-chlorophenylalanine in normal and pinealectomized male rats, Science 166:1433–1435.PubMedGoogle Scholar
  482. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., and Gessa, G. L., 1971a, Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis, Nature (London) New Biol. 229:125–126.Google Scholar
  483. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S., and Gessa, G. L., 1971b, Effect of psychotropic drugs on tryptophan concentration in the rat brain, J. Pharmacol. Exp. Ther. 177:475–480.PubMedGoogle Scholar
  484. Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1971c, Reversal of pargyline-induced inhibition of sexual behaviour in male rats by p-chlorophenylalanine, Nature (London) 230:244–245.Google Scholar
  485. Tarver, J., Berkowitz, B., and Spector, S., 1971, Alterations in tyrosine hydroxylase and monoamine oxidase activity in blood vessels, Nature (London) New Biol. 231:252–253.Google Scholar
  486. Taylor, D. C., 1962, Antidepressives in chronic schizophrenics, Lancet 2:401–402.Google Scholar
  487. Tedeschi, D. H., and Fellows, E. J., 1964, Monoamine oxidase inhibitors: Augmentation of pressor effects of peroral tyramine, Science 144:1225–1226.PubMedGoogle Scholar
  488. Tedeschi, D. H., Tedeschi, R. E., and Fellows, E. J., 1959, The effects of tryptamine on the central nervous system, including a pharmacological procedure for the evaluation of iproniazid-like drugs, J. Pharmacol. Exp. Ther. 126:223–232.PubMedGoogle Scholar
  489. Tedeschi, D. H., Tedeschi, R. E., and Fellows, E. J., 1960, In vivo monoamine oxidase inhibition measured by potentiation of tryptamine convulsions in rats (25633), Proc. Soc. Exp. Biol. Med. 103:680–682.PubMedGoogle Scholar
  490. Tedeschi, D. H., Tedeschi, R. E., and Fellows, E. J., 1961, Central serotonin antagonist activity of a number of phenothiazines, Arch. Intern. Pharmacodyn. Ther. 132:172–179.Google Scholar
  491. Tedeschi, R. E., Tedeschi, D. H., Ames, P. L., Cook, L., Marris, P. A., and Fellows, E. J., 1959, Some pharmacological observations on tranylcypromine (SKF trans-385); A potent inhibitor of monoamine oxidase, Proc. Soc. Exp. Biol. Med. 102:380–381.PubMedGoogle Scholar
  492. Tissari, A. H., and Suurhasko, B. V. A., 1971, Transport of 5HT in synaptosomes of developing rat brain, Acta Pharmacol. Toxicol. 29(Suppl. 4):59.Google Scholar
  493. Toda, N., Yamawaki, T., and Misu, Y., 1962, The sympathomimetic effects of SKF-385 on blood pressure in dog, Jpn. J. Pharmacol. 12:166–179.PubMedGoogle Scholar
  494. Todrick, A., and Tait, A. C., 1969, The inhibition of human platelet 5-hydroxy-tryptamine uptake by tricyclic antidepressive drugs. The relation between structure and potency, J. Pharm. Pharmacol. 21:751–762.PubMedGoogle Scholar
  495. Toyoda, J., 1964, The effects of chlorpromazine and imipramine on the human nocturnal sleep electroencephalogram, Folia Psychiatr. Neurol. Jpn. 18:198–221.Google Scholar
  496. Tuchmann-Duplessis, H., and Mercier-Parot, L., 1962, Influence de la niamide sur la sphere sexuelle et la fertilita du rat, Chemotherapia 4:304–313.PubMedGoogle Scholar
  497. Tuomisto, J., 1974, A new modification for studying 5-HT uptake by blood platelets: A re-evaluation of tricyclic antidepressants as uptake inhibitors, J. Pharm. Pharmacol. 26:92–100.PubMedGoogle Scholar
  498. Uchida, T., and O’Brien, R. D., 1964, The effects of hydrazines on rat brain 5-hydroxytryptamine, norepinephrine, and gamma-aminobutyric acid, Biochem. Pharmacol. 13:725–730.PubMedGoogle Scholar
  499. Udenfriend, S., Weissbach, H., and Bogdanski, D. F., 1957a, Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan, J. Biol. Chem. 224:803–810.PubMedGoogle Scholar
  500. Udenfriend, S., Weissbach, H., and Bogdanski, D. F., 1957b, Biochemical findings relating to the action of serotonin, Ann. N. Y. Acad. Sci. 66:602–608.PubMedGoogle Scholar
  501. Urry, R. L., and Dougherty, K. A., 1975, Inhibition of rat spermatogenesis and seminiferous tubule growth after short-term and long-term administration of a monoamine oxidase inhibitor, Fertil. Steril. 26:232–239.PubMedGoogle Scholar
  502. Valzelli, L., and Garattini, S., 1968, Biogenic amines in discrete brain areas after treatment with monoamineoxidase inhibitors, J. Neurochem. 15:259–261.PubMedGoogle Scholar
  503. van der Zee, P., and Hespe, W., 1973, Influence of orphenadrine HCI and its N-demethylated derivatives on the in vitro uptake of noradrenaline and 5-hydroxytryptamine by rat brain slices, Neuropharmacology12:843–851.PubMedGoogle Scholar
  504. Vane, J. R., Collier, H. O. J., Corne, S. J., Marley, E., and Bradley, P. B., 1961, Tryptamine receptors in the central nervous system, Nature (London) 191:1068–1069.Google Scholar
  505. Vanov, S., 1962, Effect of monoamine oxidase inhibitors and pyrogallol on the pressor response to adrenaline, noradrenaline, normetanephrine and tyramine in the rat, Arch. Intern. Pharmacodyn. Ther. 138:51–61.Google Scholar
  506. van Zwieten, P. A., 1973, The central action of antihypertensive drugs, mediated via central α-receptors, J. Pharm. Pharmacol. 25:89–95.PubMedGoogle Scholar
  507. Vasko, M. R., Lutz, M. P., and Domino, E. F., 1974, Structure activity relations of some indolealkylamines in comparison to phenethylamines on motor activity and acquisition of avoidance behavior, Psychopharmacologia 36:49–58.PubMedGoogle Scholar
  508. Vogel, W. H., 1967, Physiological disposition and metabolism of 3,4-dimethoxyphenylethylamine (DMPEA) in the rat, Pharmacologist 9:238.Google Scholar
  509. Vogel, W. H., 1968, Physiological disposition and metabolism of 3,4-dimethoxyphenylethylamine in the rat, Int. J. Neuropharmacol. 7:373–381.PubMedGoogle Scholar
  510. Vogel, W. H., and Horwitt, M. K., 1967, Brain levels of 3,4-dimethoxyphenylethylamine (DMPEA) and climbing performance of rats, Psychopharmacologia 11:265–269.PubMedGoogle Scholar
  511. Weber, L. J., 1966, Influence of monoamine oxidase inhibitors on 5-hydroxytryptamine synthesis in the brain (31395), Proc. Soc. Exp. Biol. Med. 123:35–38.PubMedGoogle Scholar
  512. Wenger, G. R., Stitzel, R. E., and Craig, C. R., 1973, The role of biogenic amines in the reserpine-induced alteration of minimal electroshock seizure thresholds in the mouse, Neuropharmacology 12:693–703.PubMedGoogle Scholar
  513. Westheimer, R., and Klawans, H. L., 1974, The role of serotonin in the pathophysiology of myoclonic seizures associated with acute imipramine toxicity, Neurology 24:1175–1177.PubMedGoogle Scholar
  514. Whalen, R. E., and Luttge, W. G., 1970, p-Chlorophenylalanine methyl ester: An aphrodisiac?, Science 169:1000–1001.PubMedGoogle Scholar
  515. Wiegand, R. G., and Perry, J. E., 1961, Effect of L-dopa and n-methyl-benzyl-2-propynylamine-HCI on DOPA, dopamine, norepinephrine, epinephrine and serotonin levels in mouse brain, Biochem. Pharmacol. 7:181–186.PubMedGoogle Scholar
  516. Wilson, C. A., 1974, Hypothalamic amines and the release of gonadotrophins and other anterior pituitary hormones, in: Advances in Drug Research, Vol. 8 (N. J. Harper and A. B. Simmonds, eds.), pp. 119–204, Academic Press, London-New York-San Francisco.Google Scholar
  517. Winter, C. H., and Flataker, L., 1951, The effect of antihistaminic drugs upon the performance of trained rats, J. Pharmacol. Exp. Ther. 101:156–162.PubMedGoogle Scholar
  518. Wu, P. H., and Boulton, A. A., 1975, Metabolism, distribution, and disappearance of injected β-phenylethylamine in the rat, Can. J. Biochem. 53:42–50.PubMedGoogle Scholar
  519. Wyatt, R. J., Kupfer, D. J., Scott, J., Robinson, D. S., and Snyder, F., 1969, Longitudinal studies on the effect of monoamine oxidase inhibitors on sleep in man, Psychopharmacologia 15:236–244.PubMedGoogle Scholar
  520. Wyatt, R. J., Chase, T. N., Scott, J., Snyder, F., and Engleman, K., 1970, Effect Of L-dopa on the sleep of man, Nature (London) 228:999–1001.Google Scholar
  521. Wyatt, R. J., Fram, D. H., Kupfer, D. J., and Snyder, F., 1971a, Total prolonged drug-induced REM sleep suppression in anxious-depressed patients, Arch. Gen. Psychiatry 24:145–155.PubMedGoogle Scholar
  522. Wyatt, R. J., Fram, D. H., Buchbinder, R., and Snyder, F., 1971b, Treatment of intractable narcolepsy with a monoamine oxidase inhibitor, N. Engl. J. Med. 285:987–991.PubMedGoogle Scholar
  523. Yamori, Y., Lovenberg, W., and Sjoerdsma, A., 1970, Norepinephrine metabolism in brainstem on spontaneously hypertensive rats, Science 170:544–546.PubMedGoogle Scholar
  524. Yamori, Y., de Jong, W., Yamabe, H., Lovenberg, W., and Sjoerdsma, A., 1972, Effects of L-dopa and inhibitors of decarboxylase and monoamine oxidase on brain noradrenaline levels and blood pressure in spontaneously hypertensive rats, J. Pharm. Pharmacol. 24:690–695.PubMedGoogle Scholar
  525. Yang, H.-Y. T., and Neff, N. H., 1973, β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain, J. Pharmacol. Exp. Ther. 187:365–371.PubMedGoogle Scholar
  526. Yang, H.-Y. T., and Neff, N. H., 1974, The monoamine oxidases of brain: Selective inhibition with drugs and the consequences for the metabolism of the biogenic amines, J. Pharmacol. Exp. Ther. 189:733–740.PubMedGoogle Scholar
  527. Yates, C. M., Todrick, A., and Tait, A. C., 1964, Effect of imipramine and some analogues on the uptake of 5-hydroxytryptamine by human blood platelets in vitro, J. Pharm. Pharmacol. 16:460–463.PubMedGoogle Scholar
  528. Yen, H. C. Y., Salvatore, A. T., Silverman, A. J., and King, T. O., 1962, A study of the effect of iproniazid on anticonvulsants in mice, Arch. Intern. Pharmarodyn. Ther. 140:631–645.Google Scholar
  529. Zbinden, G., and Studer, A., 1959, Experimental pathology of iproniazid and related compounds, Ann. N. Y. Acad. Sci. 80:873–884.PubMedGoogle Scholar
  530. Zeller, E. A., 1951, Oxidation of amines, in: The Enzymes, Vol. II (J. B. Sumner and K. Myrback, eds.), Pt. 1, pp. 536–544.Google Scholar
  531. Zemlan, F. P., Ward, I. L., Crowley, W. R., and Margules, D. L., 1973, Activation of lordotic responding in female rats by suppression of serotonergic activity, Science 179:1010–1011.PubMedGoogle Scholar
  532. Zirkle, C. L., and Kaiser, C., 1964, Monoamine oxidase inhibitors (nonhydrazines), in: Psychopharmacological Agents, Vol. I (M. Gordon, ed.), pp. 445–554, Academic Press, New York and London.Google Scholar
  533. Zirkle, C. L., Kaiser, C., Tedeschi, D. H., and Tedeschi, R. E., 1962, 2-Substituted cyclopropylamines. II. Effect of structure upon monoamine oxidase-inhibitory activity as measured in vivo by potentiation of tryptamine convulsions, J. Med. Pharm. Chem. 5:1265–1284.Google Scholar
  534. Zolovick, A., and Labhsetwar, A. P., 1973, Evidence for the theory of dual hypothalamic control of ovulation, Nature (London) 245:158–159.Google Scholar
  535. Zor, U., Dikstein, S., and Sulman, F. G., 1965a, The effect of monoamine oxidase inhibitors on growth and the rat tibia test, J. Endocrinol. 32:35–43.PubMedGoogle Scholar
  536. Zor, U., Dikstein, S., and Sulman, F. G., 1965b, The effect of monoamine oxidase inhibitors on growth: Mechanism of the potentiating effect on corticosteroids, J. Fndocrinol. 33:211–222.Google Scholar
  537. Zor, U., Ailabouni, H., and Sulman, F. G., 1966, The combined effect of monoamine oxidase inhibitors and corticosteroids on the pituitary-gonadal system of male rats, J. Endocrinol. 35:217–222.PubMedGoogle Scholar
  538. Zor, U., Locker, D., Schleider, M., and Sulman, F. G., 1968, Metabolic and enzymatic effects of monoamine oxidase inhibitors with and without hydrocortisone of the accessory sex glands of the rat, Eur. J. Pharmacol. 3:81–83.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard F. Squires
    • 1
  1. 1.Research LaboratoriesA/S FERROSANSoeborgDenmark

Personalised recommendations