Advertisement

0.54-MJ Superconducting Magnetic Energy Transfer and Storage

  • J. D. Rogers
  • D. J. Blevins
  • J. D. G. Lindsay
  • G. A. Miranda
  • C. E. Swannack
  • D. M. Weldon
  • J. J. Wollan
  • C. J. Mole
  • E. Mullan
  • P. W. Eckels
  • H. E. HallerIII
  • M. A. Janocko
  • S. A. Karpathy
  • D. C. Litz
  • P. Reichner
  • Z. N. Sanjana
  • M. S. Walker
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 23)

Abstract

Fusion reactors and large experiments will require extensive developments to meet their needs for pulsed energy. Nondissipative, superconducting inductive energy storage for pulsed power will be needed both for high-ß theta-pinch [1] and for low- ß tokamak ohmic heating [2–4] systems to achieve overall power balance. The toroidal reference theta-pinch reactor (RTPR) would require about 60 GJ delivered in 30 msec, the linear theta-pinch fusion/fission hybrid reactor needs about 25 GJ in 2 msec [5], and a linear reactor may require about 10 GJ in 1 msec. The ohmic heating coils in current U. S. designs of tokamak EPRs have about 1 to 2 GJ of stored energy, and the storage currents must be reversed in 0.5 to 2 sec to induce plasma current [6–10].

Keywords

Hysteresis Loss Pickup Coil Cryogenic Engineer Twist Pitch Coil Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Ribe, R. A. Krakowski, K. I. Thomassen, and T. A. Coultas, “Engineering Design Study of a Reference Theta-Pinch Reactor (RTPR),” Special Supplement on Fusion Reactor Design Problems to Nuclear Fusion, International Atomic Energy Agency, Vienna, Austria (1974).Google Scholar
  2. 2.
    G. L. Kulcinski, UWFDM-68 (1973).Google Scholar
  3. 3.
    G. L. Kulcinski, IAEA-CN-33/G1-2 (1974).Google Scholar
  4. 4.
    F. Arendt et al., in: Proceedings 8th Symposium on Fusion Technology, Nordwijkerhout, Netherlands (1974), p. 563.Google Scholar
  5. 5.
    R. A. Krakowski et al., “Prospects for Converting 232Th to 233U in a Linear Theta-Pinch Hybrid Reactor (LTPHR), ” presented at DCTR Fusion-Fission Energy Systems Review Meeting, ERDA-4, Germantown, Maryland, December 3–4, 1974.Google Scholar
  6. 6.
    M. Roberts and E. S. Bettis (eds.), Oak Ridge National Laboratory Report ORNL/TM-5042 (November 1975).Google Scholar
  7. 7.
    C. C. Baker, “Experimental Power Reactor Conceptual Design Study,” General Atomics Corporation, GA-A13534 (July 1975).Google Scholar
  8. 8.
    W. M. Stacey, Argonne National Laboratory Report ANL/CTR-75-2 (June 1975).Google Scholar
  9. 9.
    J. K. Ballou, R. L. Brown, R. B. Easter, C. G. Lawson, W. C. T. Stoddart, and H. T. Yeh, Oak Ridge National Laboratory Report ORNL/TM-5574 (February 1977).Google Scholar
  10. 10.
    C. C. Baker, “Experimental Fusion Power Reactor Conceptual Design Study, Volumes I, II, and III,” General Atomic Co., San Diego, California, Report GA-A14000 (July 1976); and Electric Power Research Institute, Palo Alto, California, Report EPRI ER-289 (December 1976).Google Scholar
  11. 11.
    J. D. Rogers, B. L. Baker, and D. M. Weldon, in: Proceedings 5th Symposium on Engineering Problems of Fusion Research, IEEE New Brunswick, New Jersey (1974), p. 432.Google Scholar
  12. 12.
    J. D. Rogers and K. D. Williamson, Los Alamos Scientific Laboratory Report LA-5918-P, Los Alamos, New Mexico (April 1975).Google Scholar
  13. 13.
    K. I. Thomassen et al., Los Alamos Scientific Laboratory Report LA-6024, Los Alamos, New Mexico (January 1976).Google Scholar
  14. 14.
    G. A. Miranda and J. D. Rogers, IEEE Trans. Magnetics MAG-11(2): 582 (1975).CrossRefGoogle Scholar
  15. 15.
    C. J. Mole, P. W. Eckels, H. E. Haller, III, M. A. Janocko, S. A. Karpathy, D. C. Litz, E. Mullan, P. Reichner, and Z. N. Sanjana, “A Superconducting 0.54-MJ Pulsed Energy Storage Coil,” paper presented at Cryogenic Engineering Conference, Boulder, Colorado, August 2–5, 1977.Google Scholar
  16. 16.
    J. D. G. Lindsay and D. M. Weldon, Los Alamos Scientific Laboratory Report LA-6790-MS (1977).Google Scholar
  17. 17.
    M. N. Wilson, Cryogenics 13: 361 (1973).CrossRefGoogle Scholar
  18. 18.
    E. J. Lucas, Technical Proposal P-1001-22, Magnetic Corporation of America Report (June 1975).Google Scholar
  19. 19.
    J. J. Wollan, in: Proceedings 6th Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, Guildford, England (1977), p. 416.Google Scholar
  20. 20.
    J. J. Wollan, IEEE Trans. Magnetics MAG-13(1): 544 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press · New York and London 1978

Authors and Affiliations

  • J. D. Rogers
    • 1
  • D. J. Blevins
    • 1
  • J. D. G. Lindsay
    • 1
  • G. A. Miranda
    • 1
  • C. E. Swannack
    • 1
  • D. M. Weldon
    • 1
  • J. J. Wollan
    • 1
  • C. J. Mole
    • 2
  • E. Mullan
    • 2
  • P. W. Eckels
    • 2
  • H. E. HallerIII
    • 2
  • M. A. Janocko
    • 2
  • S. A. Karpathy
    • 2
  • D. C. Litz
    • 2
  • P. Reichner
    • 2
  • Z. N. Sanjana
    • 2
  • M. S. Walker
    • 2
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA
  2. 2.Westinghouse Research and Development CenterPittsburghUSA

Personalised recommendations