Skip to main content

Pre- and Non-Synaptic Activities of GABA and Related Amino Acids in the Mammalian Nervous System

  • Chapter
Amino Acids as Chemical Transmitters

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 16))

Abstract

The importance of GABA as an inhibitory transmitter in the mammalian brain and spinal cord is well recognized, especially in relation to hyperpolarizing postsynaptic inhibition which involves an increase in the membrane conductance and potential of neurones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P.R., and Brown, D.A., 1975, Actions of γ-aminobutyric acid on sympathetic ganglion cells, J. Physiol. (London) 250: 85–120.

    CAS  Google Scholar 

  • Aprison, M.H., Daly, E.C., Shank, R.P., and McBride, W.J., 1975, Neurochemical evidence for glycine as a transmitter and model for its intrasynaptosomal compartmentation, in “Metabolic Compartmentation and Neurotransmission,” (S. Berl, D.D. Clark and D. Schneider, eds), pp. 37–63, Plenum Press, New York.

    Google Scholar 

  • Bagshaw, E.V., and Evans, M.H. 1976, Measurement of current spread from microelectrodes when stimulating within the nervous system, Exp. Brain Res. 25: 391–400.

    PubMed  CAS  Google Scholar 

  • Banna, N.R., 1973, Antagonistic effects of semicarbazide and pyridoxine on cuneate presynaptic inhibition, Bvain Res. 56: 249–258.

    CAS  Google Scholar 

  • Banna, N.R., and Jabbur, S.J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmac. 8: 299–307.

    CAS  Google Scholar 

  • Banna, N.R., and Jabbur, S.J., 1971, The effects of depleting GABA on cuneate presynaptic inhibition, Brain Res. 33: 530–532.

    PubMed  CAS  Google Scholar 

  • Barker, J.L., and Nicoll, R.A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. (London) 228: 259–277.

    CAS  Google Scholar 

  • Barker, J.L., Nicoll, R.A., and Padjen, A., 1975a, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses, J. Physiol. (London) 245: 521–536.

    CAS  Google Scholar 

  • Barker, J.L., Nicoll, R.A., and Padjen, A., 1975b, Studies on convulsants in the isolated frog spinal cord. II. Effects of root potentials. J. Physiol. (London) 245: 537–548.

    CAS  Google Scholar 

  • Barron, D.H., and Matthews, B.H.C., 1938, The interpretation of potential changes in the spinal cord, J. Physiol. (London) 92: 276–321.

    CAS  Google Scholar 

  • Beal, J.A., and Fox, C.A., 1976, Afferent fibres in the substantia gelatinosa of the adult monkey (Macaca mulatto): a Golgi study, J. comp. Neurol., 168: 113–143.

    PubMed  CAS  Google Scholar 

  • Beart, P.M., Curtis, D.R., and Johnston, G.A.R., 1971, 4-Aminotetrolic acid: a new conformationally-restrieted analogue of γ-aminobutyric acid, Nature (London) New Biol., 234: 80–81.

    Google Scholar 

  • Beart, P.M., Kelly, J.S., and Schon, F., 1974, γ-Aminobutyric acid in the rat peripheral nervous system, pineal and posterior pituitary, Biochem. Soc. Trans. 2: 266–268.

    Google Scholar 

  • Bell, J.A., and Anderson, E.G., 1972, The influence of semi-carbazide-induced depletion of γ-aminobutyric acid on presynaptic inhibition, Brain Res. 43: 161–169.

    PubMed  CAS  Google Scholar 

  • Berger, S.J., Carter, J.G., and Lowry, O.H., 1977, The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord, cerebellum and hippocampus, J. Neurochem. 28: 149–158.

    PubMed  CAS  Google Scholar 

  • Bertilsson, L., and Costa, E., 1976, Mass fragmentographic quantitation of glutamic acid and γ-aminobutyric acid in cerebellar nuclei and sympathetic ganglia of rats, J. Chromatog. 118: 395–402.

    CAS  Google Scholar 

  • Bertilsson, L., Suria, A., and Costa, E., 1976, γ-Aminobutyric acid in rat superior cervical ganglion, Nature (London) 260: 541–542.

    Google Scholar 

  • Bodian, D., 1966, Synaptic types on spinal motoneuron: an electron microscopic study, Johns Hopkins Hosp. Bull. 119: 16–45.

    Google Scholar 

  • Bodian, D., 1970, An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation, J. cell Biol. 44: 115–124.

    PubMed  CAS  Google Scholar 

  • Bowery, N.G., and Brown, D.A., 1972, γ-Aminobutyric acid uptake by sympathetic ganglia, Nature (London) New Biol. 238: 89–91.

    Google Scholar 

  • Bowery, N.G., and Brown, D.A., 1974a, Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro, Br. J. Pharmacol. 50: 205–218.

    PubMed  CAS  Google Scholar 

  • Bowery, N.G., and Brown, D.A., 1974b, On the release of accumulated [3H]-γ-aminobutyric (GABA) from isolated rat superior cervical ganglia, Br. J. Pharmacol. 52: 436–437 P.

    Google Scholar 

  • Bowery, N.G., Brown, D.A., and Collins, J.F., 1975, Tetramethylene-disulphotetramine: an inhibitor of γ-aminobutyric acid induced depolarization of the isolated superior cervical ganglion of the rat, Br. J. Pharmacol. 53: 422–424.

    PubMed  CAS  Google Scholar 

  • Bowery, N.G., Brown, D.A., Collins, G.G.S., Galvan, M., Marsh, S., and Yamini, G., 19 76, Indirect effects of amino-acids on sympathetic ganglion cells mediated through the release of γ-aminobutyric acid from glial cells, Br. J. Pharmacol. 57: 73–91.

    Google Scholar 

  • Bowery, N.G., Collins, J.F., and Hill, R.G., 1976, Bicyclic phosphorus esters that are potent convulsants and GABA antagonists, Nature (London) 261: 601–603.

    CAS  Google Scholar 

  • Bowery, N.G., and Dray, A., 1976, Barbiturate reversal of amino acid antagonism produced by convulsant agents, Nature (London) 264: 276–278.

    CAS  Google Scholar 

  • Bowery, N.G., and Jones, G.P., 1976, A comparison of y-aminobutyric acid and the semi-rigid analogues 4-aminotetrolic acid, 4-aminocrotonic acid and imidazole-4-acetic acid on the isolated superior cervical ganglion of the rat, Br. J. Pharmacol. 56: 323–330.

    PubMed  CAS  Google Scholar 

  • Brooks, C. McC., and Eccles, J.C., 1947, Electrical investigation of the monosynaptic pathway through the spinal cord, J. Neurophysiol. 10: 251–274.

    PubMed  CAS  Google Scholar 

  • Brown, D.A., and Galvan, M., 1977, Influence of neuroglial transport on the action of γ-aminobutyric acid on mammalian ganglion cells, Br. J. Pharmacol. 59: 373–378.

    PubMed  CAS  Google Scholar 

  • Bruggencate, G. ten., Lux, H.D., and Liebl, L., 1974, Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat, Pflugers Archiv. 349: 301–317.

    PubMed  Google Scholar 

  • Carlen, P.L., Yaari, Y., and Werman, R., 1977, Measurement of moto-neurone membrane properties during postsynaptic and presynaptic inhibition in the cat spinal cord. Proc. int. Union Physiol. Sci. 13: 118.

    Google Scholar 

  • Coimbra, A., Sodré-Borges, B.P., and Magalhães, M.M., 1974, The substantia gelatinosa Rolandi of the rat. Fine structure cyto-chemistry (acid phosphatase) and changes after dorsal root section, J. Neurocytology, 3: 199–217.

    CAS  Google Scholar 

  • Conradi, S., 1969a, Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat, Acta physiol. scand. Suppl. 332: 5–48.

    PubMed  CAS  Google Scholar 

  • Conradi, S., 1969b, Ultrastructure of dorsal root boutons on lumbosacral motoneurons of the adult cat, as revealed by dorsal root section, Acta physiol. scand. Suppl. 332: 85–111.

    PubMed  CAS  Google Scholar 

  • Cook. W.A. Jr., and Cangiano, A., 1972, Presynaptic and postsynaptic inhibition of spinal motoneurones, J. Neurophysiol. 35: 389–403.

    Google Scholar 

  • Corvaja, N., and Pellegrini, M., 1975, Ultrastructure of dorsal root projections in the toad spinal cord. An experimental neuro-anatomical study following transection of dorsal root, Arch. ital. Biol. 113: 122–149.

    PubMed  CAS  Google Scholar 

  • Crowshaw, K., Jessup, S.J., and Ramwell, P.W., 1967, Thin-layer chromatography of 1-dimethylaminonaphthalen-5-sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex, Biochem. J. 103: 79–85.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., 196 3, The pharmacology of central and peripheral inhibition, Pharmac. Rev. 15: 333–364.

    Google Scholar 

  • Curtis, D.R., 1975, Gamma-aminobutyric and glutamic acids as mammalian central transmitters, in “Metabolic Compartmentation and Neurotransmission” (S. Berl, D.D. Clarke and D. Schneider, eds.), pp. 11–36, Plenum Press, New York.

    Google Scholar 

  • Curtis, D.R., 1976, The use of transmitter antagonists in micro-electrophoretic investigations of central synaptic transmission, in “Drugs and Central Synaptic Transmission”, (P.B. Bradley and B.N. Dhawan, eds), pp. 7–35, Macmillan, London.

    Google Scholar 

  • Curtis, D.R., Duggan, A.W., Felix, D., and Johnston, G.A.R., 1971, Bicuculline, an antagonist of GABA and synaptic inhibiton in the spinal cord, Brain Res. 32: 69–96.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A., Johnston, G.A.R., and McCulloch, R.M., 1974, Central effects of ß-(p-chlorophenyl)-γ-aminobutyric acid, Brain Res. 70: 493–499.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A., and Lodge, D., 1976, The in vivo inactivation of GABA and other inhibitory amino acids in the cat nervous system, Exp. Brain Res. 25: 413–428.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A., Lodge, D., and McCulloch, R.M., 1976, A pharmacological study of Renshaw cell inhibition, J. Physiol. (London) 258: 227–242.

    CAS  Google Scholar 

  • Curtis, D.R., and Johnston, G.A.R., 1974a, Amino acid transmitters in the mammalian central nervous system, Ergebn. Physiol. 69: 97–188.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., and Johnston, G.A.R., 1974b, Convulsant alkaloids, in “Neuropoisons”, (L.L. Simpson and D.R. Curtis, eds.), pp. 207–248, Plenum Press, New York.

    Google Scholar 

  • Curtis, D.R., Lodge, D., and Brand, S.J., 1977, GABA and spinal afferent terminal excitability in the cat, Brain Res. 130: 360–363.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., and Ryall, R.W., 1966, Pharmacological studies upon spinal presynaptic fibres, Exp. Brain Res. 1: 195–204.

    PubMed  CAS  Google Scholar 

  • Davidoff, R.A., 1972a, The effects of bicuculline on the isolated spinal cord of the frog, Expl. Neurol. 35: 179–193.

    CAS  Google Scholar 

  • Davidoff, R.A., 1972b, Diphenylhydantoin increases spinal presynaptic inhibition, Amer. Neurol. Assoc. Trans. 97: 193–196.

    CAS  Google Scholar 

  • Davidoff, R.A., 1972c, Penicillin and presynaptic inhibition in the amphibian spinal cord, Brain Res. 36: 218–222.

    PubMed  CAS  Google Scholar 

  • Davidson, N., and Simpson, H.K.L., 1976, Concerning the ionic basis of presynaptic inhibition, Experientia 32: 348–349.

    PubMed  CAS  Google Scholar 

  • Davidson, N., and Southwick, C.A.P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (London) 219: 689–708.

    CAS  Google Scholar 

  • de Groat, W.C., 1966, The action of GABA and related amino acids on a sympathetic ganglion, Proc. Aust. Physiol. Soc. 9th Meeting, 15.

    Google Scholar 

  • de Groat, W.C., 1970, The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia, J. Pharmacol, exp. Ther. 172: 384–396.

    Google Scholar 

  • de Groat, W.C., 1972, GABA-depolarization of a sensory ganglion: antagonism by picrotoxin and bicuculline, Brain Res. 38: 429–432.

    PubMed  Google Scholar 

  • de Groat, W.C., and Lalley, P.M., 1973, Interaction between Picrotoxin and 5-hydroxytryptamine in the superior cervical ganglion of the cat, Br. J. Pharmacol. 48: 233–244.

    PubMed  Google Scholar 

  • de Groat, W.C., Lalley, P.M., and Block, M., 1971, The effects of bicuculline and GABA on the superior cervical ganglion of the cat, Brain Res. 25: 665–668.

    Google Scholar 

  • de Groat, W.C., Lalley, P.M., and Saum, W.R., 1972, Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: antagonism by picrotoxin and bicuculline, Brain Res. 44, 273–277.

    PubMed  Google Scholar 

  • del Castillo, J., and Katz, B., 1956, Localization of active spots within the neuro-muscular junction of the frog, J. Physiol. (London) 132: 6 30–649.

    Google Scholar 

  • Deschenes, M., and Feltz, P., 1976, GABA-induced rise of extracellular potassium in rat dorsal root ganglia: an electrophysiological study in vivo, Brain Res. 118: 494–499.

    PubMed  CAS  Google Scholar 

  • Deschenes, M., Feltz, P., and Lamour, Y., 1976, A model for an estimate in vivo of the ionic basis of presynaptic inhibition an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia, Brain Res. 118: 486–493.

    PubMed  CAS  Google Scholar 

  • Dudel, J., and Hatt, H., 1976, Four types of GABA receptors in crayfish leg muscles characterized by desensitization and specific antagonist. Pflügers Archiv. 364: 217–222.

    PubMed  CAS  Google Scholar 

  • Dudel, J., and Kuffler, S.W., 1961, Presynaptic inhibition at the crayfish neuromuscular junction, J. Physiol. (London) 155: 543–562.

    CAS  Google Scholar 

  • Eccles, J.C., 1946, Synaptic potentials of motoneurones, J. Neurophysiol. 9: 87–120.

    PubMed  CAS  Google Scholar 

  • Eccles, J.C., Kostyuk, P.G., and Schmidt, R.F., 1962, The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action, J. Physiol. (London) 162: 138–150.

    CAS  Google Scholar 

  • Eccles, J.C., and Krnjević, K., 1959, Potential changes recorded inside primary afferent fibres within the spinal cord, J. Physiol. (London) 149: 250–273.

    CAS  Google Scholar 

  • Eccles, J.C., Schmidt, R.F., and Willis, W.D., 1963a, Pharmacological studies on presynaptic inhibition, J. Physiol. (London) 168: 500–530.

    CAS  Google Scholar 

  • Eccles, J.C., Schmidt, R.F., and Willis, W.D., 1963b, The mode of operation of the synaptic mechanism producing presynaptic inhibition, J. Neurophysiol. 26: 523–538.

    Google Scholar 

  • Elliott, K.A.C., and Hobbiger, F., 1959, Gamma-aminobutyric acid; circulatory and respiratory effects in different species; reinvestigation of the anti-strychnine action in mice, J. Physiol. (London) 146: 70–84.

    CAS  Google Scholar 

  • Erulkar, S.D., and Weight, F.F., 1977, Extracellular potassium and transmitter release at the giant synapse of squid, J. Physiol (London) 266: 209–218.

    CAS  Google Scholar 

  • Famiglietti, E.V. Jr., and Peters, A., 1972, The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat, J. comp. Neurol. 144: 285–334.

    PubMed  Google Scholar 

  • Feltz, P., and Rasminsky, M., 1974, A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia, Neuropharmacology 13: 553–563.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Walberg, F., 1970, Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat, Brain Res. 20: 259–275.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., and Walberg, F., 1973, An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat, Brain Res. 54: 115–127.

    PubMed  CAS  Google Scholar 

  • Gage, P.W., 1967, Depolarization and excitation-secretion coupling in presynaptic terminals, Fedn Proc. 26: 1627–1632.

    CAS  Google Scholar 

  • Galindo, A., 1969, GABA-picrotoxin interaction in the mammalian central nervous system, Brain Res. 14: 763–767.

    PubMed  CAS  Google Scholar 

  • Galindo, A., Krnjevic, K., and Schwartz, S., 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. (London) 192: 359–377.

    CAS  Google Scholar 

  • Game, C.J.A., and Lodge, D., 1975, The pharmacology of the inhibition of dorsal horn neurones by impulses in myelinated cutaneous afferents in the cat, Exp. Brain Res. 23: 75–84.

    PubMed  CAS  Google Scholar 

  • Gerschenfeld, H.M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 5 3: 1–119.

    Google Scholar 

  • Glusman, S., 1975, Correlation between the topographical distribution of [3H]GABA uptake and primary afferent depolarization in the frog spinal cord, Brain Res. 88: 109–114.

    PubMed  CAS  Google Scholar 

  • Glusman, S., Vazquez, G., and Rudomin, P., 1976, Ultrastructural observations in the frog spinal cord in relation to the generation of primary afferent depolarization, Neurosci. Lett. 2: 137–145.

    PubMed  CAS  Google Scholar 

  • Gmelin, G., and Cerletti, A., 19 76, Electrophoretic studies on presynaptic inhibition in the mammalian spinal cord, Experientia 32: 756.

    Google Scholar 

  • Gobel, S., 1975, Golgi studies of the substantia gelatinosa neurons in the spinal trigeminal nucleus, J. comp. Neurol. 162: 397–416.

    PubMed  CAS  Google Scholar 

  • Graham, L.T., Jr., and Aprison, M.H., 1969, Distribution of some enzymes associated with the metabolism of glutamate, aspartate, γ-aminobutyrate and glutamine in cat spinal cord, J. Neurochem. 16: 559–566.

    PubMed  CAS  Google Scholar 

  • Graham, L.T., Jr., Shank, R.P., Werman, R., and Aprison, M.H., 1967, Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472.

    PubMed  CAS  Google Scholar 

  • Grinnell, A.D., 1966, A study of the interaction between moto-neurones in the frog spinal cord, J. Physiol. (London) 182: 612–648.

    CAS  Google Scholar 

  • Hagiwara, S., and Tasaki, I., 1958, A study of the mechanism of impulse transmission across the giant synapse of the squid, J. Physiol. (London) 143: 114–137.

    CAS  Google Scholar 

  • Hubbard, J.I., 1970, Mechanism of transmitter release, in “Progress in Biophysics and Molecular Biology”, Vol. 21, ( J.A.V. Butler and D. Noble, eds.), pp. 33–124, Pergamon Press, Oxford.

    Google Scholar 

  • Hubbard, J.I., and Schmidt, R.F., 1963, An electrophysiological investigation of mammalian motor nerve terminals, J. Physiol. (London) 166: 145–167.

    CAS  Google Scholar 

  • Iles, J.F., 1976, Central terminations of muscle afferents on motoneurones in the cat spinal cord, J. Physiol. (London) 262: 91–117.

    CAS  Google Scholar 

  • Iversen, L.L., and Kelly, J.S., 1975, Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells, Biochem. Pharmaco1. 24: 933–938.

    CAS  Google Scholar 

  • Jankowska, E., and Roberts, W.J., 1972, An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat, J. Physiol. (London) 222: 597–622.

    CAS  Google Scholar 

  • Johnston, G.A.R., Curtis, D.R., Game, C.J.A., McCulloch, R.M., and Twitchin, B., 1975, Cis and trans-4-ami no cro tonic acid as GABA analogues of restricted conformation, J. Neurochem. 24: 157–160.

    PubMed  CAS  Google Scholar 

  • Kanazawa, I., Iversen, L.L., and Kelly, J.S., 1976, Glutamate decarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion and superior cervical ganglion, J. Neurochem. 27: 1267–1269.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965, Propagation of electric activity in motor nerve terminals, Proc. R. Soc. B. 161: 453–482.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 196 7, A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (London) 192: 407–436.

    Google Scholar 

  • Katz, B., and Miledi, R., 1971, The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid, J. Physiol. (London) 216: 503–512.

    CAS  Google Scholar 

  • Kellerth, J.-O., and Szumski,A.J., 1966, Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal moto-neurones, Acta physiol. scand. 66: 146–156.

    PubMed  CAS  Google Scholar 

  • Kelly, J.S., Gottesfeld,Z., and Schon, F., 1973, Reduction in GAD I activity from the dorsal lateral region of the deafferented rat spinal cord, Brain Res. 62: 581–586.

    CAS  Google Scholar 

  • Kelly, J.S., and Renaud, L.P., 1973a, On the pharmacology of α-aminobutyric acid receptors on the cuneo-thalamic relay cells of the cat, Br. J. Pharmacol. 48: 369–386.

    PubMed  CAS  Google Scholar 

  • Kelly, J.S., and Renaud, L.P., 1973b, On the pharmacology of ascending, descending and recurrent postsynaptic inhibition of the cuneo-thalamic relay cells in the cat, Br. J. Pharmacol. 48: 396–408.

    PubMed  CAS  Google Scholar 

  • Kerr, F.W.L., 1970, The organization of primary afferents in the subnucleus caudalis of the trigeminal: a light and electron microscopic study of degeneration, Brain Res. 23: 147–165.

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Shoji, T., and Yamamoto, K., 19 74, Effects of GABA on presynaptic nerve terminals in bullfrog (Rana catesbiana) sympathetic ganglia, Experientia 30:382–383,

    Google Scholar 

  • Křiž, N., Syková, R., and Vyklický, L., 19 75, Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission, J. Physiol. (London) 249: 167–182.

    Google Scholar 

  • Krnjević, K., 1955, The distribution of Na and K in cat nerves J. Physiol. (London) 128: 473–488.

    Google Scholar 

  • Krnjević, K., 19 74, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.

    Google Scholar 

  • Krnjevic, K., and Morris, M.E., 19 75, Correlation between extracellular focal potentials and K+ potentials evoked by primary afferent activity, Can. J. Physiol. Pharmacol. 53: 912–922.

    Google Scholar 

  • Krogsgaard-Larsen, P., and Johnston, G.A.R., 19 75, Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds, J. Neurochem. 25: 797–802.

    Google Scholar 

  • Kudo, Y., Abe, N., Goto, S., and Fukuda, H., 1975, The chloride- dependent depression by GABA in the frog spinal cord, Eur. J. Pharmacol. 32: 251–259.

    PubMed  CAS  Google Scholar 

  • Kuno, M., 1961, Site of action of systemic gamma-ami nob utyric acid in the spinal cord, Jap. J. Physiol. 11: 304–318.

    CAS  Google Scholar 

  • Kuno, M., and Muneoka, A., 1961, Effects of long chain omega-amino acids on the spinal cord, Proc. Jap. Acad. 37: 398–401.

    CAS  Google Scholar 

  • Kuno, M., Munoz-Martinez, E.J., and Randić, M., 1973, Synaptic action on Clarke’s column neurones in relation to afferent terminal size, J. Physiol. (London) 228: 343–360.

    CAS  Google Scholar 

  • LaMotte, C., 1977, Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord, J. comp. Neurol. 172: 529–562.

    PubMed  CAS  Google Scholar 

  • Lawson, S.N., Biscoe, T.J., and Headley, P.M., 19 76, The effect of electrophoretically applied GABA on cultured dissociated spinal cord and sensory ganglion neurones in the rat, Brain Res. 117, 493–497.

    Google Scholar 

  • Levy, R.A., 19 75, The effect of intravenously administered γ-amino-butyric acid on afferent fiber polarization, Brain Res. 92: 21–34.

    Google Scholar 

  • Levy, R.A., and Anderson, E.G., 1972, The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability, Brain Res. 43: 171–180.

    PubMed  CAS  Google Scholar 

  • Levy, R.A., and Anderson, E.G., 1974, The role of γ-aminobutyric acid as a mediator of positive dorsal root potentials, Brain Res. 76: 71–82.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, Å., and Hökfelt, T., 1973, Autoradiographic uptake patterns of [3H] GABA and [3H] glycine in central nervous tissues with special reference to the cat spinal cord, Brain Res. 62: 587–595.

    PubMed  CAS  Google Scholar 

  • Lodge, D., Curtis, D.R., and Brand, S.J., 1977, A pharmacological study of the inhibition of ventral group Ia-excited spinal interneurones, Exp. Brain Res. 29: 9 7–105.

    Google Scholar 

  • Lothman, E,W., and Somjen, G.G., 1975, Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord, J. Physiol. (London) 252: 115–136.

    Google Scholar 

  • McLaughlin, B.J., 1972a, The fine structure of neurons and synapses in the motor nuclei of the cat spinal cord, J. comp. Neurol. 144: 429–460.

    Google Scholar 

  • McLaughlin, B.J., 1972b, Dorsal root projections to the motor nuclei in the cat spinal cord, J. comp. Neurol. 144: 461–474.

    Google Scholar 

  • McLaughlin, B.J., Barber, R., Saito, K., Roberts, E., and Wu, J.Y., 1975, Immunocytochemical localization of glutamate decarboxylase in rat spinal cord, J. comp. Neurol. 164: 305–322.

    PubMed  CAS  Google Scholar 

  • McMahan, U.J., and Kuffler, S.W., 1971, Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog, Proc. R. Soc. B. 177: 485–508.

    CAS  Google Scholar 

  • Martin, A.R., and Ringham, G.L., 1975, Synaptic transfer at a vertebrate central nervous system synapse, J. Physiol. (London) 251: 409–426.

    CAS  Google Scholar 

  • Mendell, L., 1972, Properties and distribution of peripherally evoked presynaptic hyperpolarization in cat lumbar spinal cord, J. Physiol. (London) 226: 769–792.

    CAS  Google Scholar 

  • Miledi, R., and Slater, C.R., 1966, The action of calcium on neuronal synapses in the squid, J. Physiol. (London) 184: 473–498.

    CAS  Google Scholar 

  • Milokhin, A.A., and Reshetnikov, S.S., 1972, Morphology of receptor innervation of spinal ganglia, Neurosci. Behav. Physiol. 5: 9 3–103.

    Google Scholar 

  • Minchin, M.C.W., and Beart, P.M., 1975, Compartmentation of amino acid metabolism in the rat dorsal root ganglion; a metabolic and autoradiographic study, Brain Res. 83: 4 37–449.

    Google Scholar 

  • Minchin, M.C.W., and Iversen, L.L., 1974, Releasee of [3H] gamma-aminobutyric acid from glial cells in rat dorsal root ganglia, J. Neurochem. 23, 533–540.

    PubMed  CAS  Google Scholar 

  • Miyata, Y., and Otsuka, M., 19 72, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischaemia, J. Neurochem. 19: 1833–1834.

    Google Scholar 

  • Miyata, Y., and Otsuka, M., 1975, Quantitative histochemistry of γ-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition, J. Neurochem. 25: 239–244.

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A., 1975a, Presynaptic action of barbiturates in the frog spinal cord, Proc. Natl. Acad. Sci. U.S.A. 72: 1460–1463.

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A., 1975b, The action of acetylcholine antagonists on amino acid responses in the frog spinal cord in vitro, Br. J. Pharmacol. 55: 449–458.

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A., 1976, The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord, Life Sci. Oxford 19: 521–526.

    CAS  Google Scholar 

  • Nicoll, R.A., 1977, The effect of conformationally restricted amino acid analogues on the frog spinal cord in vitro, Br. J. Pharmacol. 59: 303–309.

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A., and Padjen, A., 1976, Pentylenetetrazol: an antagonist of GABA at primary afferents of the isolated frog spinal cord, Neuropharmacology 15: 69–71.

    PubMed  CAS  Google Scholar 

  • Nishi, S., Minota, S., and Karczmar, A.G., 19 74, Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization, Neuropharmacology 13: 215–219.

    Google Scholar 

  • Obata, K., 1974, Transmitter sensitivities of some nerve and muscle cells in culture, Brain Res. 73: 71–88.

    PubMed  CAS  Google Scholar 

  • Otsuka, M., and Konishi, S., 1976, GABA in the spinal cord, in “GABA in Nervous System Function,” Vol. 5, ( E. Roberts, T.N. Chase and D.B. Tower, eds.), pp. 197–202, Raven Press, New York.

    Google Scholar 

  • Otsuka, M., Obata, K., Miyata, Y., and Tanaka, Y., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system, J. Neurochem. 18: 287–295.

    PubMed  CAS  Google Scholar 

  • Ralston, H.J., 1968, Dorsal root projections to dorsal horn neurons in the cat spinal cord, J. comp. Neurol. 132: 303–330.

    PubMed  Google Scholar 

  • Ramon-Moliner, E., 1977, Reciprocal synapses of the olfactory bulb: questioning the evidence, Brain Res. 128: 1–20.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S., 1911, “Histologie du Systeme Nerveux de l’Homme et des Vertebres,” Vol. 2, pp. 442–452, Maloine, Paris.

    Google Scholar 

  • Ranck, J.B., 1975, Which elements are excited in electrical stimulation of mammalian central nervous system, a review, Brain Res. 98: 417–440.

    PubMed  Google Scholar 

  • Ransom, R., and Nelson, P.G., 1975, Neuropharmacological responses from nerve cells in tissue culture, in “Handbook of Psycho-pharmacology,” Vol. 2, (L.L. Iversen, S.D. Iversen and S.H. Snyder, eds.), pp. 101–127, Plenum Press, New York, London.

    Google Scholar 

  • Repkin, A.H., Wolf, P., and Anderson, E.G., 1976, Non-GABA mediated primary afferent depolarization, Brain Res. 117: 147–152.

    PubMed  CAS  Google Scholar 

  • Réthelyi, M., 19 77, Preterminal and terminal axon arborization in the substantia gelatinosa of cat’s spinal cord, J. comp. Neurol. 172: 511–528.

    Google Scholar 

  • Réthelyi, M., and Szentágothai, J., 1969, The large synaptic complexes of the substantia gelatinosa, Exp. Brain Res. 7: 258–274.

    PubMed  Google Scholar 

  • Ribak, C.W., Vaughn, K., Saito, K., Barber, R., and Roberts, E., 1977, Glutamate decarboxylase localization in neurons of the olfactory bulb, Brain Res. 126: 1–18.

    PubMed  CAS  Google Scholar 

  • Roberts, W.J., and Smith, D.O., 1973, Analysis of threshold currents during microstimulation of fibres in the spinal cord, Acta physiol. scand. 89: 384–394.

    PubMed  CAS  Google Scholar 

  • Rustioni, A., and Sotelo, C., 1974, Some effects of chronic deafferentation on the ultrastructure of the nucleus gracilis of the cat, Brain Res. 73: 527–533.

    PubMed  CAS  Google Scholar 

  • Salvador, R.A., and Albers, R.W., 1959, The distribution of glutamic-γ-aminobutyric transaminase in the nervous system of the Rhesus monkey, J. biol. Chem. 234: 922–925.

    PubMed  CAS  Google Scholar 

  • Schmidt, R.F., 1963, Pharmacological studies on the primary afferent depolarization of the toad spinal cord, Pflügers Archiv. 277: 325–346.

    CAS  Google Scholar 

  • Schmidt, R.F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergebn. Physiol. 63: 20–101.

    PubMed  CAS  Google Scholar 

  • Schon, F., and Kelly, J.S., 1974a, Autoradiographic localisation of [3H]GABA and [3H]glutamate over satellite glial cells, Brain Res. 66: 275–288.

    CAS  Google Scholar 

  • Schon, F., and Kelly, J.S., 1974b, The characterisation of [3H]GABA uptake into the satellite glial cells of rat sensory ganglia, Brain Res. 66: 289–300.

    CAS  Google Scholar 

  • Singer, W., and Lux, H.D., 1973, Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus, Brain Res. 64: 17–33.

    PubMed  CAS  Google Scholar 

  • Srimal, R.C., and Bhargava, K.P., 1966, Peripheral neural effects of gamma aminobutyric acid, Arch. int. Pharmacodyn. Ther. 164: 444–450.

    CAS  Google Scholar 

  • Stanton, H.C., 1964, Mode of action of gamma-aminobutyric acid on the cardiovascular system, Arch. int. Pharmacodyn. Ther. 143: 195–204.

    Google Scholar 

  • Stanton, H.C., and Woodhouse, F.H., 1960, The effect of gamma-n-butyric acid and some related compounds on the cardiovascular system of anaesthetized dogs, J. Pharmacol. 128: 233–242.

    CAS  Google Scholar 

  • Stoney, S.D., Jr., Thompson, W.D., and Asanuma, H., 1968, Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current, J. Neurophysiol. 31: 659–669.

    PubMed  Google Scholar 

  • Sverdlov, Yu.S., and Kozhechkin, S.N., 1975, Effects of glycine and gamma-aminobutyric acid on excitability of central terminals of primary afferent fibres, Neurophysiol. USSR, 7: 388–394.

    CAS  Google Scholar 

  • Syková, E., and Vyklický, L., 1977, Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg2+ concentrations, Neurosci. Lett. 4: 161–165.

    PubMed  Google Scholar 

  • Szentágothai, J., 1970, Glomerular synapses, complex synaptic arrangements, and their operational significance, in “The Neurosciences: Second Study Program”, (F.O. Schmitt, ed.), pp. 427–443, The Rockefeller University Press, New York.

    Google Scholar 

  • Takeuchi, A., and Takeuchi, N., 1962, Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo, J. gen. Physiol. 45: 1181–1193.

    PubMed  CAS  Google Scholar 

  • Tappaz, M.L., Zivin, J.A., and Kopin, I.J., 1976, Intraspinal glutamic decarboxylase distribution after transection of the cord at the thoracic level, Brain Res. 111: 220–223.

    PubMed  CAS  Google Scholar 

  • Tebēcis, A.K., and Phillis, J.W., 1969, The use of convulsants in studying possible functions of amino acids in the toad spinal cord, Comp. Biochem. Physiol. 28: 1303–1315.

    PubMed  Google Scholar 

  • Uchizono, K., 1975, “Excitation and Inhibition. Synaptic Morphology” Igaku Shoin Ltd., Tokyo.

    Google Scholar 

  • Valdivia, O., 1971, Methods of fixation and the morphology of synaptic vesicles, J. comp. Neurol. 142: 257–274.

    PubMed  CAS  Google Scholar 

  • Walberg, F., 1965, Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization, Expl. Neurol. 13: 218–231.

    CAS  Google Scholar 

  • Walberg, F., 1966, The fine structure of the cuneate nucleus in normal cats and following interruption of afferent fibres. An electron microscopic study with particular reference to findings made in Glees and Nauta sections, Exp. Brain Res. 2: 107–128.

    PubMed  CAS  Google Scholar 

  • Wall, P.D., 1958, Excitability changes in afferent fibre terminations and their relation to slow potentials, J. Physiol. (London) 142: 1–21.

    CAS  Google Scholar 

  • Westrum, L.E., and Black, R.G., 1971, Fine structural aspects of the synaptic organization of the spinal trigeminal nucleus (pars interpolaris) of the cat, Brain Res. 25: 265–287.

    PubMed  CAS  Google Scholar 

  • Willis, W.D., Núñez, R., and Rudomin, P., 1976, Excitability changes of terminal arborization of single Ia and Ib afferent fibers produced by muscle and cutaneous conditioning volleys, J. Neurophysiol. 39: 1150–1159.

    Google Scholar 

  • Woodward, J.K., Bianchi, C.P., and Erulkar, S.D., 1969, Electrolyte distribution in rabbit cervical ganglion, J. Neurochem. 16: 289–299.

    PubMed  CAS  Google Scholar 

  • Young, J.A.C., Brown, D.A., Kelly, J.S., and Schon, F., 1973, Autoradiographic localization of sites of [3H]γ-aminobutyric acid accumulation in peripheral autonomic ganglia, Brain Res. 63: 479–486.

    PubMed  CAS  Google Scholar 

  • Zenker, W., and Hogl, E., 1976, The prebifurcation section of the axon of the rat spinal ganglion cell, Cell Tiss. Res. 165: 345–363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Curtis, D.R. (1978). Pre- and Non-Synaptic Activities of GABA and Related Amino Acids in the Mammalian Nervous System. In: Fonnum, F. (eds) Amino Acids as Chemical Transmitters. NATO Advanced Study Institutes Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4030-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4030-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4032-4

  • Online ISBN: 978-1-4613-4030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics