Skip to main content

Glycine: Inhibition from the Sacrum to the Medulla

  • Chapter
Book cover Amino Acids as Chemical Transmitters

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 16))

Abstract

From a theoretical point of view, the fact that glycine has many metabolic roles as well as a functional role in the CNS is extremely interesting to the neurobiologist. Glycine does not have an assymetric carbon atom nor is it an essential amino acid (except in the chick). It is found in most tissues and its synthesis has been demonstrated in animals, plants and microorganisms. It has also been shown to be present in varying amounts in the tissues of the central nervous system. Most standard textbooks of biochemistry indicate that glycine is metabolically active and is utilized in the formation of proteins, heme, purines, glutathione, hippuric acid, creatine, glycocholic acid, serine, formate (for the one-carbon pool), glucose and glycogen. However, although glycine is biosynthetically involved in these important metabolic processes, in 1965 and shortly thereafter, a series of papers from the laboratories of Aprison and Werman announced that glycine was a segmental inhibitory transmitter in the cat spinal cord and thus also had an important functional role in the CNS (Aprison and Werman, 1965; Graham et al., 1967; Davidoff et al., 1967a,b; Werman et. al., 1967, 1968). Thus, in addition to GABA, the role of glycine had to be considered in studying inhibitory processes of CNS functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., Eccles, J.C., and Schmidt, R.F., 1962, Presynaptic inhibition in the cuneate nucleus, Nature (Lond.) 194: 741–743.

    CAS  Google Scholar 

  • Andersen, P., Eccles, J.C., Shima, K. and Schmidt, R.F., 1964, Mechanism of synaptic transmission in the cuneate nucleus, J. Neurophysiol. 27: 1096–1116.

    Google Scholar 

  • Ando, T. and Nyhan, W.L., 1974. Proprionic acidemia and the ketotic hyperglycinemia syndrome, in “Heritable Disorders of Amino Acid Metabolism” (W.L. Nyhan, ed.), Wiley, New York.

    Google Scholar 

  • Applegarth, D.A. and Poon, S., 1975, Interpretation of elevated blood glycine levels in children, Clin. Chim. Acta 63: 49–54.

    PubMed  CAS  Google Scholar 

  • Aprison, M.H., 1965. Research approaches to problems in mental illness: brain neurohumor-enzyme systems and behavior, Prog. Brain Res. 16: 48–80.

    PubMed  CAS  Google Scholar 

  • Aprison, M.H., 1970a, Evidence of the release of 14C glycine from hemisectioned toad spinal cord with dorsal root stimulation, Pharmacologist 12: 222.

    Google Scholar 

  • Aprison, M.H., 1970b. Studies on the release of glycine in the isolated spinal cord of the toad, Trans. Am. Soc. Neurochem. 1: 25.

    Google Scholar 

  • Aprison, M.H., 1977, Glycine as a neurotransmitter, in “Psychopharmacology: A Generation of Progress” (M.A. Lipton, A. Di Mascio and K.F. Killam, eds.) pp. 333–346, Raven Press, New York.

    Google Scholar 

  • Aprison, M.H. and Hingtgen, J.N., 1970, Neurochemical correlates of behavior, Int. Rev. Neurobiol. 13: 325–341.

    CAS  Google Scholar 

  • Aprison, M.H. and McBride, W.J., 1973. Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat, Life Sci. 12: 449–458.

    Google Scholar 

  • Aprison, M.H. and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 2075–2083.

    Google Scholar 

  • Aprison, M.H. and Werman, R., 1968, A combined neurochemical and neurophysiological approach to the identification of central nervous system neurotransmitters, in “Neurosciences Research”, Vol. 1 (S. Ehrenpreis and O.C. Solnitzky, eds.) pp. 143–174, Academic Press, New York.

    Google Scholar 

  • Aprison, M.H., Graham, Jr. L.T., Livengood, D.R. and Werman, R., 1965. Distribution of glutamic acid in the cat spinal cord and roots, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24: 462.

    Google Scholar 

  • Aprison, M.H., Shank, R.P. and Davidoff, R.A., 1969. A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates, Comp. Biochem. Physiol. 28: 1345–1355.

    PubMed  CAS  Google Scholar 

  • Aprison, M.H., Hingtgen, J.N. and McBride, W.J., 1975. Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1813–1822.

    CAS  Google Scholar 

  • Aprison, M.H., Daly, E.C., Shank, R.P. and McBride, W.J., 1976, Neurochemical evidence for glycine as a transmitter and a model for its intrasynaptosomal compartment at ion, In “Metabolic Compartmentation and Neurotransmission” ( S. Berl, D.D. Clarke and D. Schneider, eds.) pp. 37–63, Plenum Press, New York.

    Google Scholar 

  • Balázs, R., Kovacs, S., Cocks, W.A., Johnson, A.L. and Eayrs, J.T., 1971. Effective thyroid hormone on the biochemical maturation of rat brain: postnatal cell formation, Brain Res. 25: 555–570.

    PubMed  Google Scholar 

  • Balcar, V.J. and Johnston, G.A.R., 1973, High affinity uptake of transmitters. Studies of the uptake of L-aspartate, GABA, L-glutamate, and glycine in cat spinal cord, J. Neurochem. 20: 529–539.

    PubMed  CAS  Google Scholar 

  • Bank, W.J. and Morrow, G., 1972, A familial spinal cord disorder with hyperglycinemia, Arch. Neurol. 27: 136–144.

    PubMed  CAS  Google Scholar 

  • Baumgartner, E.R., Bauchman, C., Brechbuhler, T. and Wick, H., 1975» Acute neonatal nonketotic hyperglycinemia: normal propionate and methylmalomate metabolism, Pediat. Res. 9: 559–564.

    PubMed  CAS  Google Scholar 

  • Beart, P.M. and Bhial, K.B., 1976, Compartmentation and release of glycine in vitro, Neuroscience Abst. 11: 594.

    Google Scholar 

  • Belcher, G., Davies, J. and Ryall, R.W., 1976, Glycine mediated inhibitory transmission of group IA-excited inhibitory inter- neurones by Renshaw cells, J. Physiol. (London) 256: 651–662.

    CAS  Google Scholar 

  • Benecke, R., Takano, K., Schmidt, J. and Henatsch, H.D., 1977. Tetanus toxin induced actions on spinal Renshaw cells and la inhibitory interneurones during development of local tetanus in the cat, Exp. Brain Res. 27: 271–286.

    PubMed  CAS  Google Scholar 

  • Berger, S.J., Carter, J.G. and Lowry, O.H., 1977a, The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord cerebellum and hippocampus, J. Neurochem. 28: 149–158.

    PubMed  CAS  Google Scholar 

  • Berger, S.J., McDaniel, M.L., Carter, J.G. and Lowry, O.H., 1977b, Distribution of four potential transmitter amino acids in monkey retina, J. Neurochem. 28: 159–163.

    PubMed  CAS  Google Scholar 

  • Biscoe, T.J., Duggan, A.W., and Lodge, D., 1972, Antagonism between bicuculline, strychnine, and picrotoxin and depressant amino-acids in the rat nervous system, Comp. Gen. Pharmacol. 3, 423–433.

    PubMed  CAS  Google Scholar 

  • Boehme, D.H., Fordice, M.W., Marks, N., and Vogel, W., 1973, Distribution of glycine in human spinal cord and selected regions of brain, Brain Res. 353–359.

    Google Scholar 

  • Bradford, H.F., 1970, Metabolic response of synaptosomes to electrical stimulation: Release of amino acids, Brain Res. 19: 239–247.

    PubMed  CAS  Google Scholar 

  • Bradford, H.F., Bennett, G.W. and Thomas, A.J., 1973, Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes, J. Neurochem. 21: 495–505.

    PubMed  CAS  Google Scholar 

  • Bridges, W.F., 1968, Serine transhydroxymethylase in developing mouse brain, J. Neurochem. 15: 1325–1328.

    Google Scholar 

  • Brody, T., Shane, B., and Stokstad, E.L.R., 1975. Identification and subcellular distribution of folates in rat brain, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 905.

    Google Scholar 

  • Brooks, V.B. and Asanuma, H., 1965. PEarmacological studies of recurrent cortical inhibition and facilitation, Am. J. Physiol. 208: 674–681.

    PubMed  CAS  Google Scholar 

  • Bruggencate, G. Ten and Engberg, I., 1968, Analysis of glycine actions on spinal, interneurones by intracellular recording, Brain Res. 11: 446–450.

    PubMed  Google Scholar 

  • Bruggencate, G. Ten and Engberg, I., 1971. Iontophoretic studies in deiters nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin, Brain Res. 25: 431–448.

    PubMed  Google Scholar 

  • Bruggencate, G. Ten and Sonnhof, U., 1972, Effects of glycine and GABA and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus, Arch. Ges. Physiol. 334: 240–252.

    Google Scholar 

  • Bruin, W.J., Frontz, B.M. and Sallach, H.J., 1975, The occurrence of a glycine cleavage system in mammalian brain, J. Neurochem. 20: 1649–1658.

    Google Scholar 

  • Burton, E.G. and Sallach, H.J., 1975. Methylenetetrahydrofolate reductase in the rat central nervous system: intracellular and regional distribution, Arch. Biochem. and Biophys. 166: 483–494.

    CAS  Google Scholar 

  • Cho, Y.D., Martin, R.O. and Tunnicliff, G., 1973. Uptake of (3H) glycine and (14C) glutamate by cultures of chick spinal cord, J. Physiol. (London) 235: 437–446.

    CAS  Google Scholar 

  • Crawford, J.M. and Curtis, D.R., 1964, The excitation and depression of mammalian cortical neurones by amino acids, Brit. J. Pharmacol. Chemotherap. 23: 313–329.

    CAS  Google Scholar 

  • Crawford, J.M., Curtis, D.R., Voorhoeve, P.E. and Wilson, V.J., 1963, Strychnine and cortical inhibition, Nature (London) 200: 845–846.

    CAS  Google Scholar 

  • Curtis, D.R., 1963, The pharmacology of central and peripheral inhibition, Pharmacol. Rev. 15: 333–364.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R. and DeGroat, W.C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10: 208–212.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C., 1960, The excitation and depression of spinal neurons by structurally related amino acids, J. Neurochem. 6: 117–141.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J. Physiol. (London) 166: 1–14.

    CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C., 1965. The pharmacology of amino acids related to gamma-aminobutyric acid, Pharmacol. Rev. 17: 347–392.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C., 1959, The depression of spinal neurones by γ-amino-n-butyric acid and β-alanine, J. Physiol. (London) 146: 185–203.

    CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (London) 150: 656–682.

    CAS  Google Scholar 

  • Curtis, D.R., Hosli, L., Johnston, G.A.R. and Johnston, I.H., 1968a, The hyperpolarization of spinal interneurones by glycine and related amino acids, Exptl. Brain Res. 5: 235–258.

    CAS  Google Scholar 

  • Curtis, D.R., Hosli, L. and Johnston, G.A.R., 1968b, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exptl. Brain Res. 61: 1–18.

    Google Scholar 

  • Curtis, D.R., Felix, D., Game, C.J.A. and McCulloch, R.M., 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51: 358–362.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A. and Lodge, D., 1976a, The in vivo inactivation of GABA and other inhibitory amino acids in the cat nervous system, Exp. Brain Res. 25: 413–428.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A. and Lodge, D., 1976b, Benzodiazepines and central glycine receptors, Br. J. Pharmac. 56: 307–311.

    CAS  Google Scholar 

  • Curtis, D.R., Game, C.J.A., Lodge, D. and McCulloch, R.M., 1976c, A pharmacological study of Renshaw cell inhibition, J. Physiol. 258: 227–242.

    PubMed  CAS  Google Scholar 

  • Daly, E.C. and Aprison, M.H., 1974a, Distribution of serine transhydroxymethylase and glycine transaminase in several areas of the central nervous system of the rat, J. Neurochem. 22: 877–885

    PubMed  CAS  Google Scholar 

  • Daly, E.C. and Aprison, M.H., 1974b, Serine hydroxymethyItransferase, glycine transaminase, and the glycine cleavage system in the CNS of the rat, Trans. Am. Soc. Neurochem. 5: 131.

    Google Scholar 

  • Daly, E.C., Nadi, N.S. and Aprison, M.H., 1976, Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: evidence for an endogenous inhibitor during in vitro assay, J. Neurochem. 26: 179–185.

    PubMed  CAS  Google Scholar 

  • Davidoff, R.A., Shank, R.P., Graham, L.T., Jr., Aprison, M.H. and Werman, R., 1967a, Association of glycine with spinal interneurons, Nature (London) 214: 680–681.

    CAS  Google Scholar 

  • Davidoff, R.A., Graham, L.T., Jr., Shank, R.P., Werman, R. and Aprison, M.H., 1967b, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.

    PubMed  CAS  Google Scholar 

  • Davidoff, R.A., Aprison, M.H. and Werman, R., 1969, The effects of strychnine on the inhibition of interneurons by glycine and γ-aminobutyric acid, Int. J. Neuropharmacol. 8: 191–194.

    PubMed  CAS  Google Scholar 

  • Davis, R. and Huffmann, R.D., 1969. Pharmacology of the brachium conjunctivum-red nucleus synaptic system in the baboon, Fed. Proc. Fed. Am. Soc. Exp. Biol. 28: 775.

    Google Scholar 

  • DeBelleroche, J.S. and Bradford, H.F., 1973, Amino acids in synaptic vesicles from mammalian cerebral cortex: a reappraisal, Neurochem. 21: 441–451.

    CAS  Google Scholar 

  • DeGroat, W.C., 1970, The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18: 542–544.

    PubMed  CAS  Google Scholar 

  • DeMarchi, W.J. and Johnston, G.A.R., 1969. The oxidation of glycine by D-amino acid oxidase in extracts of mammalian central nervous tissue, J. Neurochem. 16: 335–361.

    Google Scholar 

  • Denavit-Saubie, M. and Champagnat, J., 1975. The effect of some depressing amino acids on bulbar respiratory and non-respiratory neurons, Brain Res. 97: 356–361.

    CAS  Google Scholar 

  • Dennison, M.E., Jordan, C.C. and Webster, R.A., 1976, Distribution and localization of tritiated amino acids by autoradiography in the cat spinal cord in vivo, J. Physiol. (London) 258: 55–56 P.

    Google Scholar 

  • Dickinson, J.C. and Hamilton, P.B., 1966, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13: 1179–1187.

    PubMed  CAS  Google Scholar 

  • Dimpfel, W. and E. Habermann, 1973, Histoautoradiographic localization of 125I-labeled tetanus toxin in rat spinal cord, Naunyn-Schniedeberg’s Arch. Pharmacol. 280: 177–182.

    CAS  Google Scholar 

  • Eccles, J.C.,’1964, “The physiology of synapses.” Springer-Verlag, Berlin.

    Google Scholar 

  • Fedineć, A.A. and Shank, R.P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine, and aspartic acid in the rat spinal cord, J. Neurochem. 18: 2229–2234.

    PubMed  Google Scholar 

  • Gaitoncde, M.K., Fayein, N.A., and Johnson, A.L., 1975, Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine, J. Neurochem. 24: 1215–1223.

    Google Scholar 

  • Galindo, A., 1969, GEBA-picrotoxin interaction in the mammalian central nervous system, Brain Res. l4: 763–767.

    Google Scholar 

  • Galindo, A., Krnjevic, K. and Schwartz, ST, 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. (London) 192: 359–377.

    CAS  Google Scholar 

  • Galindo, A., Krnjević, K. and Schwartz, S., 1968, Patterns of firing in cuneate neurones and some effects of Flaxedil, Expt. Brain Res. 87–101.

    Google Scholar 

  • Gerritsen, T., Nyhan, W.L., Rehberg, M.L. and Ando, T., 1969, Metabolism of glyoxylate in nonketotic hyperglycinemia, Pediat. Res. 3: 269–274.

    PubMed  CAS  Google Scholar 

  • Graham, L.T., Jr. and Aprison, M.H., 1966, Fluorometric determination of aspartate, glutamate and γ-aminobutyrate in nerve tissue by using enzymic methods, Anal. Biochem. 15: 487–497.

    PubMed  CAS  Google Scholar 

  • Graham, L.T., Jr., Shank, R.P., Werman, R. and Aprison, M.H., 1967. Distribution of some synaptic transmitter candidates in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472.

    PubMed  CAS  Google Scholar 

  • Greene, M.L., Lietman, P.S., Rosenberg, L.E. and Seegmiller, J.E., 1973. Familial hyperglycinemia: new defect in renal tubular transport of glycine and amino acids, Am. J. Med. 54: 265–271.

    PubMed  CAS  Google Scholar 

  • Gregson, N.A. and Williams, P.L., 1969» A comparative study of brain and liver mitochondria from newborn and adult rats, J. Neurochem. 16: 617–626.

    Google Scholar 

  • Guertzenstein, P.G. and Silver, A., 1974. Fall in blood presssure produced from discrete regions of the ventral surface of the medulla by glycine and lesions, J. Physiol. (London) 242: 489–503.

    CAS  Google Scholar 

  • Gushchin, S., Kozhechkin, S.N. and Sverdlov, Y. S., 1969, Presynaptic nature of depression by tetanus toxin of postsynaptic inhibition, Doklady Akademii Nauk. (USSR) 187: 685–688.

    CAS  Google Scholar 

  • Habermann, E. and Wellhomer, H.H., 1974, Advances in tetanus research, Klin. Wschr. 52: 255–265.

    PubMed  CAS  Google Scholar 

  • Hall, P.V., Smith, J.E., Campbell, R.L., Felten, D.L. and Aprison, M.H., 1976, Neurochemical correlates of spasticity, Life Sci. 18: 1467–1472.

    PubMed  CAS  Google Scholar 

  • Hill, R.G. and Taberner, P.V., 1976, Some neuropharmacological properties of the new non-barbiturate hypnotic etomidate (R(+)-ethyl-l-(α-methyl-benzyl) imidazole-5-carboxylate), Brit. J. Pharmac. 54: 24l P.

    Google Scholar 

  • Hill, R.G., Simmonds, M.A. and Straughan, D.W., 1973, Amino acid antagonists and the depression of cuneate neurones by γ-aminobutyric acid (GABA) and glycine, Brit. J. Pharmac. 47: 642–643 P.

    Google Scholar 

  • Hill, R.G., Simmonds, M.A. and Straughan, D.W., 1976, Antagonism of γ-aminobutyric acid and glycine by convulsants in the cuneate nucleus of cat, Br. J. Pharmac. 56: 9–19.

    CAS  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine, Brain Res. 32: 189–194.

    PubMed  Google Scholar 

  • Hösli, L. and Tebecis, A.K., 1970, Actions of amino acids and convulsants on bulbar reticular neurones, Exp. Brain Res. 11: 111–127.

    PubMed  Google Scholar 

  • Hösli, L., Andres, P.F. and Hosli, F., 1971, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34: 399–402.

    PubMed  Google Scholar 

  • Humoller, F.L., Mahler, D.J. and Parker, M.M., 1966, Distribution of amino acids between plasma and spinal fluid, Int. J. Neuropsychiatry 2: 293–297.

    PubMed  CAS  Google Scholar 

  • Johnston, G.A.R.T 1968, The intraspinal distribution of some de-pressant amino acids, J. Neurochem. 15: 1013–1017.

    PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Iversen, L.L., 1971. Glycine uptake in the central nervous system slices and homogenates: evidence for different uptake mechanisms in spinal cord and cerebral cortex, J. Neurochem. 18: 1951–1961.

    PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Vitali, M.V., 1969a, Glycine producing transaminase activity in extracts of spinal cord, Brain Res. 15: 471–472.

    Google Scholar 

  • Johnston, G.A.R. and Vitali, M.V., 1969b, Glycine-2-oxoglutarate transaminase in rat cerebral cortex, Brain Res. 15: 201–208.

    PubMed  CAS  Google Scholar 

  • Johnston, G.A.R., DeGroat, W.C. and Curtis, D.R., 1969. Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16: 797–800.

    Google Scholar 

  • Jordan, C.C. and Webster, R.A., 1971, Release of acetylcholine and 14C-glycine from the cat spinal, cord in vivo, Brit. J. Pharmacol. 43: 441 P.

    Google Scholar 

  • Kawamura, H. and Provini, L., 1970, Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids, Brain Res. 24: 293–304.

    PubMed  CAS  Google Scholar 

  • Kelly, J.S. and Krnjević, K., 1969, The action of glycine on cortical neurones, Exp. Brain Res. 9: 155–163.

    PubMed  CAS  Google Scholar 

  • Kelly, J.S. and Renaud, L.P., 1971. Postsynaptic inhibition in the cuneate blocked by GABA antagonists, Nature New Biol. 232: 25–26.

    PubMed  CAS  Google Scholar 

  • Kelly, J.S. and Renaud, L.P., 1973, On the pharmacology of the glycine receptors on the cuneothalamic relay cells of the cat, Brit. J. Pharmac. 48: 387–395.

    CAS  Google Scholar 

  • Kikuchi, G., 1973, The glycine cleavage system: composition reaction mechanism and physiological significance, Mol. Cell Biol. 1: 169–187.

    CAS  Google Scholar 

  • Krieger, I. and Hart, Z.H., 1974, Valine sensitive nonketotic hyperglycinemia, J. Pediat. 85: 43–48.

    PubMed  CAS  Google Scholar 

  • Krnjević, K. and Phillis, J.WT, 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. (London) 165: 274–304.

    Google Scholar 

  • Krnjevć, K., Randic, M. and Straughan, D.W., 1966, Pharmacology of cortical inhibition, J. Physiol. (London) 184: 78–105.

    Google Scholar 

  • Lajtha, A. and Toth, J., 1963, The brain barrier system V: stereo-specificity of amino acid uptake, exchange and efflux, J. Neurochem. 10: 909–920.

    PubMed  CAS  Google Scholar 

  • cinamie: klinik., diatetik, und pathologisch-anatomische veranderungen, Z.. Kinderheilk., 116: 95–114.

    Google Scholar 

  • Liang, C.G., 1962, Studies on experimental thiamine deficiency. Trends of keto acid formation and detection of glyoxylic acid, Biochem. J., 82: 429.

    Google Scholar 

  • Ljungdahl, A. and Hökfelt, T., 1973, Autoradiographic uptake patterns of (3H) GABA and (3H) glycine in central nervous tissues with special reference to the cat spinal cord, Brain Kes., 62: 587–590.

    CAS  Google Scholar 

  • Logan, W.J. and Snyder, S.H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res., 42: 413–431.

    PubMed  CAS  Google Scholar 

  • Matus, I.I. and Dennison, M.E., 1972, An autoradiographic study of uptake of exogenous glycine by vertebrate spinal cord slices in vitro, J. Neurocytology, 1: 27–34.

    CAS  Google Scholar 

  • McBride, W.J., Daly, E. and Aprison, M.H., 1973, Interconversion of glycine and serine in a synaptosome fraction isolated from the spinal cord, medulla oblongata, telencephalon, and cerebellum of the rat, J. Neurobiol., 4: 557–566.

    PubMed  CAS  Google Scholar 

  • McLaughlin, B.J., Barber, R., Saito, K., Roberts, E. and Yu, J.Y., 1975, Immunocytochemical localization of glutamate decarboxylase in rat spinal cord, J. Comp. Neurol., 164: 305–321.

    PubMed  CAS  Google Scholar 

  • Motokawa, Y. and Kikuchi. G., 1971, Glycine metabolism in rat liver mitochondria: V. Intramitochondrial localization of the reversible glycine cleavage system and serine hydroxymethyl- transferase, Arch. Biochem. Biophys., 146: 461–466.

    PubMed  CAS  Google Scholar 

  • Mulder, A.H. and Snyder, S.H., 1974, Potassium induced release of amino acids from cerebral cortex and spinal cord slices of the rat, Brain Res., 76: 297–308.

    PubMed  CAS  Google Scholar 

  • Neal, M.J., 1971, The uptake of (14C) glycine by slices of mammalian spinal cord, J. Physiol. (London), 215: 103–117.

    CAS  Google Scholar 

  • Neal, M.J. and Pickles, H., 1969, Uptake of (lhC) glycine by spinal cord, Nature (London), 223: 679.

    Google Scholar 

  • Oppenheim, R.W. and Reitzel, J., 1975, Ontogeny of behavioral sensitivity to strychnine in the chick embryo: evidence for the early onset of CNS inhibition, Brain Behav. Evol., 11: 130–159.

    PubMed  CAS  Google Scholar 

  • Osborne, R.H., Bradford, H.F. and Jones, D.G., 1973, Patterns of amino acid release from nerve endings isolated from spinal cord and medulla, J. Neurochem., 21: 407–419.

    PubMed  CAS  Google Scholar 

  • Paulsen, E.P. and Hsia, Y.E., 1974, Asymptomatic propionicacidemia: variability of clinical expression in a Mennonite kindred, Am. J. Hum. Genet., 26: 66a.

    Google Scholar 

  • Perry, T.L., Urguhart, N., MacLean, J., Evans, M.E., Hansen, S., Davidson, G.F., Applegarth, D.A., MacLeod, P.J. and Lock, J.E., 1975a, Nonketotic hyperglycinemia: glycine accumulation due to absence of glycine cleavage in the brain, New Engl. J. Med., 292: 1269–1273.

    Google Scholar 

  • Perry, T.L., Urguhart, N., MacLean, J. and Hansen, S., 1975b, Response to a letter to the editor, New Engl. J. Med., 293: 778.

    Google Scholar 

  • Price, D.L., Griffin, J., Young, A., Peck, K. and Stocks, A., 1975, Tetanus toxin; direct evidence for retrograde intraaxonal transport, Sci., 188: 945–947.

    CAS  Google Scholar 

  • Price, D.L., Stocks, A., Griffin, J.W., Young, A. and Peck, K., 1976, Glycine specific synapses in rat spinal cord: identification by electron microscope autoradiography, J. Cell Biol., 68: 389–395.

    PubMed  CAS  Google Scholar 

  • Price, D.L., Griffin, J.W. and Peck, K., 1977. Tetanus toxin: evidence for binding at presynaptic nerve endings, Brain Res., 121: 379–384.

    Google Scholar 

  • Rassin, D.K. and Gaull, G.E., 1975, Transmethylation and transsulfuration enzymes in rat brain: their subcellular distri ution, Trans. Am. Soc. Neurochem., 6: 134.

    Google Scholar 

  • Reubi, J.C. and Cúenod, M., 1976, Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus, Brain Res., 112: 347–361.

    PubMed  CAS  Google Scholar 

  • Roberts, P.J., 1974. The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res., 67: 419–428.

    PubMed  CAS  Google Scholar 

  • Roberts, P.J. and Mitchell, J.F., 1972, The release of amino acids from the hemisected spinal cord during stimulation, J. Neurochem., 19: 2473–2481.

    PubMed  CAS  Google Scholar 

  • Romano, M. and Cerra, M., 1967, Further studies on the toxicity of glyoxylate in the rat, Gazz. Biochem., 16: 354–358.

    CAS  Google Scholar 

  • Sato, T., Kochi, H., Sato, N. and Kikuchi, G., 1969, Glycine metabolism by rat liver mitochondria, J. Biochem., 65: 77–83.

    PubMed  CAS  Google Scholar 

  • Scriver, C.R., White, A., Sprague, W. and Horwood, S.P., 1975, Plasma-CSF glycine ratio in normal and nonketotic hyperglycinemic subjects, New Engl. J. Med., 293: 778.

    PubMed  CAS  Google Scholar 

  • Shank, R.P. and Aprison, M.H., 1970a, The metabolism of glycine and serine in eight different areal of the rat central nervous system, J. Neurochem., 17: 1461–1475.

    PubMed  CAS  Google Scholar 

  • Shank, R.P. and Aprison, M.H., 1970b, Method for multiple analyses of concentration and specific radioactivity of indivudual amino acids in nervous tissue extracts, Anal. Biochem., 35: 136–145.

    PubMed  CAS  Google Scholar 

  • Shank, R.P., Aprison, M.H. and Baxter, C.F., 1973, Precursors of glycine in the central nervous system: comparison of specific activities in glycine and other amino acids after administration of (U-14C) glucose, (3,414C) glycose, (1-14C) glycose, (U-14C) serine or (l,514C) citrate to the rat, Brain Res., 52: 301–308.

    PubMed  CAS  Google Scholar 

  • Smith, J.E., Hall, P.V., Campbell, R.L., Jones, A.R. and Aprison, M.H., 1976, Level of gamma-aminobutyric acid in the dorsal grey lumbar spinal cord during the development of spinal spasticity, Life Sci., 19: 1525–1530.

    PubMed  CAS  Google Scholar 

  • Stern, P. and Catovic, S., 1975, Brain glycine and aggressive behavior, Pharmacol. Biochem. Beh. 3: 723–726.

    CAS  Google Scholar 

  • Stokes, B.T. and Bignall, K.E., 1975, The emergence of inhibition in the chick embryo spinal cord, Brain Res., 77: 231–242.

    Google Scholar 

  • Sverdlov, Y.S., Alekseeva, T.I., 1966, Effect of tetanus toxin on presynaptic inhibition in the spinal cord, Fed. Proc. Fed. Am. Soc. Exp. Biol., 25: 931–935.

    CAS  Google Scholar 

  • Tada, K., Corbeel, L.M., Eeckels, R., and Eggermont, E., 1974, A block in glycine cleavage reaction as a common mechanism in ketotic and nonketotic hyperglycinemia, Pediat. Res., 8: 721–723.

    PubMed  CAS  Google Scholar 

  • Takano, K. and Neumann, K., 1972, Effect of glycine upon stretch reflex tension, Brain Res., 36: 474–475.

    PubMed  CAS  Google Scholar 

  • Tarlov, I.M., 1967, Rigidity in man due to spinal interneuron loss, Arch. Neurol., l6: 537–543.

    Google Scholar 

  • Tarlov, I.M., 1974, Rigidity and primary motoneuron damage in tetanus, Exp. Neurol., 44: 246–254.

    PubMed  CAS  Google Scholar 

  • Tarlov, I.M., Ling, H. and Yamada, H., 1973, Neuronal pathology in experimental local tetanus, clinical implications, Neurol. ( Minneapolis ), 23: 580–591.

    CAS  Google Scholar 

  • Tebecis, A.K. and DiMaria, A., 1972, Strychnine-sensitive inhibition in the medullary reticular formation: evidence for glycine as an inhibitory transmitter, Brain Res., 40: 373–383.

    PubMed  CAS  Google Scholar 

  • Tebecis, A.K., Hosli, L. and Haas, H., 1971, Bicuculline and the depression of medullary reticular neurones by GABA and glycine, Experientia (Basel), 27: 548.

    CAS  Google Scholar 

  • Trijbels, J.M.F., Monnens, L.A.H., van der Zee, S.P.M., Vrenken, J.A. Th, Sengers, R.C.A. and Schretlen, E.D.A.M., 1974, A patient with nonketotic hyperglycinemia biochemical findings and therapeutic approaches, Pediat. Res., 8: 598–605.

    PubMed  CAS  Google Scholar 

  • Tsukada, Y., Nagata, Y., Hirano, S. and Matsutani, T., 1963, Active transport of amino acid into cerebral cortex slices, J. Neurochem., 10: 241.

    PubMed  CAS  Google Scholar 

  • Uchizono, K., 1965, Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat, Nature (London), 207: 642–643.

    CAS  Google Scholar 

  • Uhr, M.L., 1973, Glycine decarboxylation in the central nervous system, J. Neurochem., 20: 1005–1009.

    PubMed  CAS  Google Scholar 

  • Voaden, M.J., 1974, Light and spontaneous efflux of radioactive glycine from the frog retina, Exp. Eye Res., 18: 467–475.

    PubMed  CAS  Google Scholar 

  • Yoshida, T. and Kikuchi, G., 1973, Major pathways of serine and glycine catabolism in various organs of the rat and cock, J. Biochem., 73: 1013–1022.

    PubMed  CAS  Google Scholar 

  • Young, A.B. and Snyder, S.H., 1973, Strychnine binding associated with glycine receptors of the central nervous system, Proc. natn. Acad. Sci. U.S.A., 70: 2832–2836.

    CAS  Google Scholar 

  • Young, A.B. and Snyder, S.H., 1974a, Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: cooperativity of glycine interactions, Molec. Pharmac., 10: 790–809.

    CAS  Google Scholar 

  • Young, A.B. and Snyder. S.H., 1974b, The glycine synaptic receptor-evidence that strychnine binding is associated with the ionic conductance mechanism, Proc. natn. Acad. Sci. U.S.A., 71: 4002–4005.

    CAS  Google Scholar 

  • Young, A.B., Zukin, S.R. and Snyder, S.H., 1974, Interaction of benzodiazepines with central nervous glycine receptors: possible mechanism of action? Proc. natn. Acad, Sci. U.S.A., 71: 2246–2250.

    CAS  Google Scholar 

  • Werman, R., 1965, The specificity of molecular processes involved in neuronal transmission, J. Theoret. Biol., 9: 471–477.

    CAS  Google Scholar 

  • Werman, R. and Aprison, M.H., 1968, Glycine: the search for a spinal cord inhibitory transmitter, in “Structure and Functions of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund and U. Soderberg, eds.) pp. 473–486, Pergamon Press, New York.

    Google Scholar 

  • Werman, R., Davidoff, R.A. and Aprison, M.H., 1966, Glycine and postsynaptic inhibition in cat spinal cord, Physiologist, 9: 318.

    Google Scholar 

  • Werman, R., Davidoff, R.A. and Aprison, M.H., 1967, Inhibition of motoneurones by iontophoresis of glycine, Nature (London), 214: 681–683.

    CAS  Google Scholar 

  • Werman, R., Davidoff, R.A. and Aprison, M.H., 1968, Inhibitory action of glycine on spinal neurons in the cat, J. Neurophysiol., 31: 81–95.

    PubMed  CAS  Google Scholar 

  • Zukin, S.R., Young, A.B. and Snyder, S.H., 1975, Development of the synaptic glycine receptor in the chick embryo spinal cord, Brain Res., 83: 525–530.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Aprison, M.H., Nadi, N.S. (1978). Glycine: Inhibition from the Sacrum to the Medulla. In: Fonnum, F. (eds) Amino Acids as Chemical Transmitters. NATO Advanced Study Institutes Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4030-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4030-0_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4032-4

  • Online ISBN: 978-1-4613-4030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics