Continuum Mechanics and Deformation Processing

  • W. Johnson


This chapter reviews the concepts required in understanding deformation processing. Many of these concepts have been developed since the published proceedings of the 1962 Sagamore Conference on the Fundamentals of Deformation Processing [1].


Deformation Processing Ring Rolling Guide Roll Superplastic Material Cusp Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backofen, W.A., Burke, J.J., Coffin, L.F. Jr., Reed, N.L., and Weiss, V., Fundamentals of Deformation Processing, Syracuse, N.Y.: Syracuse University Press, 1964.Google Scholar
  2. 2.
    Johnson, H., “The Cutting of Round Wire with Knife-Edge and Flat-Edge Tools,”, Appl. Sci. Res., Ser. A, 7 (1957), 65–88.Google Scholar
  3. 3.
    Johnson, W., Chitkara, N.R., Ibrahim, A.H., and Dasgupta, A.K., “Hole Flanging and Punching of Circular Plates with Conically Headed Cylindrical Punches”, J. Strain Anal., 8 (1973), 228–41.CrossRefGoogle Scholar
  4. 4.
    Wang, N.M. and Henner, M.L., “An Analytical and Experimental Study of Stretch Flanging”, Int. J. Mech. Sci., 16 (1974), 135–43.CrossRefGoogle Scholar
  5. 5.
    Johnson, W. and Mellor, P.B., Engineering Plasticity, New York: Van Nostrand Reinhold Company, 1973.Google Scholar
  6. 6.
    Thomsen, E.G., Yang, C.T., and Kobayashi, S., Mechanics of Plastic Deformation in Metal Processing, New York: Macmillan Publishing Company, Inc., 1965.Google Scholar
  7. 7.
    Avitzur, B., Metal Forming: Processes and Analysis, New York: McGraw-Hill Book Company, 1968.Google Scholar
  8. 8.
    Bishop, J.F.W., “An Approximate Method for Determining the Temperature Reached in Steady Motion Problems of Plane Plastic Strain”, Quart. J. Mech. App1. Math., 9 (1956), 236–46.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Johnson, W., Baraya, G.L., and Slater, R.A.C., “On Heat Lines or Lines of Thermal Discontinuity”, Int. J. Mech. Sci., 6 (1964), 409–14.CrossRefGoogle Scholar
  10. 10.
    Massey, H.F., “The Flow of Metal During Forging”, Proceedings of the Manchester Association of Engineers, 1921.Google Scholar
  11. 11.
    Balendra, R. and Travis, F. W., “Static and Dynamic Blanking of Steel of Varying Hardness”, Int. J. Mach. Tool. Des. Res., 10 (1970), 249–71.CrossRefGoogle Scholar
  12. 12.
    Hill, R., Mathematical Theory of Plasticity, Oxford: Clarendon Press, 1950.Google Scholar
  13. 13.
    Johnson, W. and Chitkara, N.R., “Corrugated Plate Formed by Side Extrusion with Two Coaxial Rams Moving at Different Speeds”, Int. J. Mech. Sci., 15 (1973), 199–210.CrossRefGoogle Scholar
  14. 14.
    Johnson, W. and Kudo, H., The Mechanics of Metal Extrusion, Manchester: Manchester University Press, 1962.Google Scholar
  15. 15.
    Johnson, W., Sowerby, R., and Haddow, J.B., atPlane-Strain Slip-Line Fields, New York: American Elsevier Publishing Company, 1970.Google Scholar
  16. 16.
    Ewing, D.J.F., “A Series-Method for Constructing Plastic Slipline Fields”, J. Mech. Phys. Solids, 15 (1967),105–14.CrossRefMATHADSGoogle Scholar
  17. 17.
    Collins, I. F., “The Algebraic-Geometry of Slip Line Fields with Applications to Boundary Value Problems”, Proc. Roy. Soc., Ser. A, 303 (1968), 317–38.CrossRefMATHADSGoogle Scholar
  18. 18.
    Dewhurst, P. and Collins, I. F., “A Matrix Technique for Constructing Slip-Line Field Solutions to a Class of Plane Strain Plasticity Problems”, Int. J. Num. Methods Eng., 7 (1973), 357–78.CrossRefMATHGoogle Scholar
  19. 19.
    Dewhurst, P., Collins, I.F., and Johnson, W., “A Class of Slipline Field Solutions for the Hot Rolling of Strip”, J. Mech. Eng. Sci., 15 (1973), 439–47.CrossRefGoogle Scholar
  20. 20.
    Sims, R.B., “Calculation of Roll Force and Torque in Hot Rolling Mills”, Proc. Inst. Mech. Eng., 168 (1954), 191–200.CrossRefGoogle Scholar
  21. 21.
    Dugdale, D. S., “Indentation of Strips with Flat Discs on a Flat Anvil”, Int. J. Prod. Res., 3 (1964), 141–51.CrossRefGoogle Scholar
  22. 22.
    Dewhurst, P., “Plane-Strain Indentation on a Smooth Foundation: A Range of Solutions for Rigid Perfectly Plastic Strip”, Int. J. Mech. Sci., 16 (1974), 923–30.CrossRefGoogle Scholar
  23. 23.
    Venter, R., Johnson, W., and de Malherbe, M.C., “The Plane Strain Indentation of Anisotropic Aluminum Using a Frictionless Flat Rectangular Punch”, J. Mech. Eng. Sci., 13 (1971), 416–28.CrossRefGoogle Scholar
  24. 24.
    Johnson, W., de Malherbe, M.C., and Venter, R., “Some Slip Line Field Results for the Plane Strain Extrusion of Anisotropic Materials through Frictionless Wedge Shaped Dies”, Int. J. Mech. Sci., 15 (1973), 109–16.CrossRefGoogle Scholar
  25. 25.
    Chitkara, N.R. and Collins, I.F., “A Graphical Technique for Constructing Anisotropic Slip Line Fields”, Int. J. Mech. Sci., 16, (1974), 241–48.CrossRefMATHGoogle Scholar
  26. 26.
    Hill, R., “A General Method of Analysis for Metal-Working Processes”, J. Mech. Phys. Solids, 11 (1963), 305–26.CrossRefADSGoogle Scholar
  27. 27.
    Lahoti, G.D. and Kobayashi, S., “On Hill’s General Method of Analysis for Metal-Working Processes”, Int. J. Mech. Sci., 16 (1974), 521–40.CrossRefGoogle Scholar
  28. 28.
    Rosenhaim, H., Haughton, J.L., and Bingham, K.E., “Zinc Alloys with Aluminum and Copper”, J. Inst. Metals, 23 (1920)Google Scholar
  29. 29.
    Pearson, C.E., “The Viscous Properties of Extruded Eutectic Alloys of Lead-Tin and Bismuth-Tin”, J. Inst. Metals, 54 (1934), 111–23.Google Scholar
  30. 30.
    Bochvar, A.A. and Sviderskaia, Z.A., “Superplasticity in Zinc-Aluminum Alloys”, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 9 (1945), 821–24.Google Scholar
  31. 31.
    Backofen, H.A., Turner, I.R., and Avery, D.H., “Superplasticity in an Al-Zn Alloy”, ASM Trans. Quart., 57 (1964), 980–90; and Backofen, H.A., Azzarto, F.J., Murty, G.S., and Zehr, S.H., “Superplasticity”, in Ductility, Metals Park, Ohio: American Society for Metals (1968), 279–310.Google Scholar
  32. 32.
    Johnson, H., Al-Naib, T.Y.M., and Duncan, J.I., “Superplastic Forming Techniques and Strain Distributions in a Zinc Aluminum Alloy”, J. Inst. Metals, 100 (1972), 45–50.Google Scholar
  33. 33.
    Saller, R.,A. and Duncan, J.I., “Stamping Experiments with Superplastic Alloys”, J. Inst. Metals, 99 (1971), 173–77.Google Scholar
  34. 34.
    High-Velocity Forming of Metals, ASTME Manufacturing Data Series, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1964.Google Scholar
  35. 35.
    Davies, R. and Austin, E.R., Developments in High Speed Metal Forming, Brighton: Machinery Publishing Company, Ltd., 1970.Google Scholar
  36. 36.
    Ezra, A.A., Principles and Practice of Explosive Metalworking, London: Industrial Newspapers Ltd., 1973.Google Scholar
  37. 37.
    Reid, S.R., “A Discussion of the Mechanism of Interface Have Generation in Explosive Welding”, Int. J. Mech. Sci., 16 (1974), 399–413.CrossRefGoogle Scholar
  38. 38.
    Backofen, W.A., Deformation Processing, Reading, Mass.: Addison-Wesley Publishing Company, 1972.Google Scholar
  39. 40.
    Hhitely, R.L., “The Importance of Directionality in Drawing Quality Sheet Steel”, Trans. ASM, 52 (1960), 154–69.Google Scholar
  40. 40.
    Keeler, S.P., “Forming Limit Criteria-Sheets”, in this volume.Google Scholar
  41. 41.
    Marciniak, Z. and Kuczynski, K., “Limit Strains in the Process of Stretch-Forming Sheet Metal”, Int. J. Mech. Sci., 9 (1967), 609–20.CrossRefGoogle Scholar
  42. 42.
    Swift, H.W., “Plastic Instability Under Plane Stress”, J. Mech. Phys. Solids, 1 (1952), 1–18.Google Scholar
  43. 43.
    Hill, R., “On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets”, J. Mech. Phys. Solids, 1 (1952), 19–30.CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Moore, G.G. and Wallace, J.F., “The Effect of Anisotropy on Instability in Sheet-Metal Forming”, J. Inst. Metals, 93 (1964), 33–38.Google Scholar
  45. 45.
    Lee, C.H. and Kobayashi, S., “New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method”, Trans. ASME, Series B., J. Eng. Ind., 95 (1972), 865–73.CrossRefGoogle Scholar
  46. 46.
    Sowerby, R. and Johnson, W., “Prediction of Earing in Cups Drawn from Anisotropic Sheet Using Slip Line Field Theory”, J. Strain Anal., 9 (1974), 102–08.CrossRefGoogle Scholar
  47. 47.
    Slater, R.A.C., Barooah, N.K., Appleton, E., and Johnson, W., “The Rotary Forging Concept and Initial Work with an Experimental Machine”, Proc. Inst. Mech. Eng., 184, Pt. 1, No. 32 (1969–70), 577–86.CrossRefGoogle Scholar
  48. 48.
    Hawkyard, J.B., Johnson, W., et al., unpublished research.Google Scholar
  49. 49.
    British Patent No. 319,065, September 19, 1929, Improvements in Forging and Upsetting Machines, H.F. Massey to B. & S. Massey Ltd.Google Scholar
  50. 50.
    Johnson, W. and Travis, F.W., “A Tool for Hydrodynamic Extrusion”, Proc. Inst. Mech. Eng., 182, Pt. 3C (1967–68), 9–10.Google Scholar
  51. 51.
    Green, D., “ ‘Hydrospin’-A New Concept of Extrusion”, J. Inst. Metals, 99 (1971), 76–80.Google Scholar
  52. 52.
    Hawkyard, J.B., Johnson, W., Kirkland, J., and Appleton, E., “Analysis for Roll Force and Torque in Ring Rolling with Some Supporting Experiments”, Int. J. Mech. Sci., 15 (1973), 873–93.CrossRefGoogle Scholar
  53. 53.
    Johnson, W., “Slip-Line Field and Discontinuous Velocity Solutions for Some Metal Forming Processes. Part I. Use of Discontinuous Velocity Fields”, CIRP Annalen, 10, No.4 (1961-62), 180-85, “Part 2. Slip-Line Fields”, CIRP Annalen, 10, No.4 (1961–62), 185–88 and “Part 3. Temperature Calculations”, CIRP Annalen, 10, No.4 (1961–62), 275–78.Google Scholar
  54. 54.
    Johnson, W., “The Plane Strain Extrusion of Short Slugs”, J. Meeh. Phys. Solids, 5 (1957), 202–14.CrossRefADSGoogle Scholar
  55. 55.
    Medrano, R.E., Hinesley, C.P., Gillis, P.P., and Conrad, H., “Visiop1astieity, Analysis of 2024 Aluminum Alloy Extrusions”, Int. J. Meeh. Sci., 15 (1973), 955–65.CrossRefGoogle Scholar
  56. 56.
    Farmer, L.E. and Oxley, P.L.B., “A Slip Line Field for Plane Strain Extrusion of a Strain-Hardening Material”, J. Meeh. Phys. Solids, 19 (1971), 369–88.CrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • W. Johnson
    • 1
  1. 1.University Engineering DepartmentCambridgeEngland

Personalised recommendations