Hydrogen-Bonded Complexes of Silica with Organic Compounds

  • Ralph K. Iler
Part of the Nobel Foundation Symposia book series (NOFS, volume 40)


At ordinary temperature in water solution, labile bonds are formed between the neutral oxygen or nitrogen atoms of alcohols, ketones, ethers, amides and the hydrogen atoms of silanol groups, SiOH. The resulting Si-O-H-C hydrogen bonds are formed both in the case of the SiOH groups of polysilicic acid and with those on the surface of silica particles but apparently not with those of monosilicic acid, Si(OH)4, which is a weaker acid. Hydrogen bond formation is promoted by the presence of salt and by lower temperature, but becomes weaker above 60°C. Hydrogen bonds do not form near negatively charged −SiO sites which increasingly populate the silica surface above pH 7. This is probably due to steric hindrance by nearby counter cations. The complexes are much more stable when many hydrogen bonds can be formed in parallel; for example, between a long polyethylene oxide molecule and the surface of a particle of colloidal silica. Phase separation occurs when a hydrophobic complex is formed and separates as a coacervate. Precipitation occurs when silica particles act as crosslinks between polymer molecules. Denaturation of protein occurs when the affinity of amide and basic nitrogen groups for the silica surface distorts the natural molecular conformation. In addition to H-bonding, certain compounds form chelate type bonds which are probably involved in the metabolism of silicon.


Silica Particle Silicic Acid Silica Surface Colloidal Silica SiOH Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenhein, A, Raibman, B & Schendel, G, Z Anorg Allg Chem 1931, 196, 160.CrossRefGoogle Scholar
  2. 2.
    Weiss, A, Reiff, G & Weiss, A, Z Anorg Allg Chem 1961, 311,142, 151.CrossRefGoogle Scholar
  3. 3.
    Weiss, A & Harvey, D R, Angew Chem 1964, 76, 818.CrossRefGoogle Scholar
  4. 4.
    Pauling, L, The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca, NY, 1960.Google Scholar
  5. 5.
    Pimentel, G C & McClellan, C L, Petrologic phase equilibrium. Freeman, San Francisco and London, 1960.Google Scholar
  6. 6.
    Iler, R K, The Colloid Chemistry of Silica and Silicates. Cornell University Press, Ithaca, NY, 1970.Google Scholar
  7. 7.
    Schwarz, R & Muller, W D, Z Anorg Allgem Chem 1958, 296, 276.CrossRefGoogle Scholar
  8. 8A.
    Strazhesko, D I & Yankovskaya, G G, Ukr Khim Zh 1959, 25, 471.Google Scholar
  9. 8B.
    Kirichenko, K & Vysotskii, F, Dokl Akad Nauk SSSR, 1967, 175, 635.Google Scholar
  10. 9.
    Kirk, J S, US Pats 2,408,654 and 2,408,656. DuPont Co. 1946.Google Scholar
  11. 10.
    Iler, R K, J Phys Chem 1952, 56, 673.CrossRefGoogle Scholar
  12. 11.
    Iler, R K & Pinkney, P S, Ind Eng Chem 1947, 39, 1379.CrossRefGoogle Scholar
  13. 12.
    Pauling, L, Chem Eng News 1946, 24, 1375.CrossRefGoogle Scholar
  14. 13.
    Iler, R K, J Am Chem Soc 1947, 69, 724.CrossRefGoogle Scholar
  15. 14.
    Iler, R K & Dalton, R L, J Phys Chem 1956, 60, 955.CrossRefGoogle Scholar
  16. 15.
    Bolt, G H, J Phys Chem 1957, 61, 1166.CrossRefGoogle Scholar
  17. 16.
    Iler, R K, J Am Chem Soc 1952, 74, 2929.CrossRefGoogle Scholar
  18. 17.
    Her, R K, J Colloid Interface Science 1975, 51, 388.CrossRefGoogle Scholar
  19. 18.
    Holt, P F & Went, C W, Trans Farad Soc 1959, 55, 1435.CrossRefGoogle Scholar
  20. 19.
    Schwarz, K, Proc Natl Acad Sci US 1973, 70, 1608.CrossRefGoogle Scholar
  21. 20.
    Schlipkoeter, H W amp; Brockhaus, A, Klin Wochschr 1961, 39, 1182. CA56-7955.Google Scholar
  22. 21.
    Schlepkoeter, H W, Dolgner, R & Brockhaus, A, German Med Monthly 1963, 8, 509. Deut Med Wochschr 1963, 88, 1895. CA60-2248.Google Scholar
  23. 22.
    Schlepkoeter, H W & Beck, E G, Med Lavoro 1965, 56, 485. CA64-4151.Google Scholar
  24. 23.
    Beck, E G, Bruch J J & Brockhaus, A, Z Zellforsch mikrosk Anat 1963, 59, 568.PubMedCrossRefGoogle Scholar
  25. 24.
    Barhad, G, Rotaru, G & Lazarescu, I, Igiena 1971, 20, 451. CA76-68004.Google Scholar
  26. 25.
    Schnaidman, I M, Gig Tr Prof Zabol 1974, 1, 19. CA81-9817.Google Scholar
  27. 26.
    Margolis, J et al., Austr J Exptl Biol Med Sci 1961, 39, 249; 1962, 40, 505; Ann NY Acad Sci 1963, 104, 133; Proc 8th Intern Cong Hematol Tokyo 1960, 4, Pan Pac Press Tokyo; Nature 1961, 189, 1010.CrossRefGoogle Scholar
  28. 27.
    Charache, P, MacLeod, C & White, J, Gen Physiol 1962, 45, 1117.CrossRefGoogle Scholar
  29. 28.
    Depasse, J & Warlus, J, J Cooloid Interface Sci 1976, 56, 618.CrossRefGoogle Scholar
  30. 29.
    Lindquist, I, Nilsson, O & Ronquist, G, J Med Sci 1974, 79, 1.Google Scholar
  31. 30.
    Haldane, J S, Seventh Rep Expl in Mines Comm London, 1914.Google Scholar
  32. 31.
    Iler, R K, J Colloid Interface Sci 1976, 55, 25.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Ralph K. Iler
    • 1
  1. 1.WilmingtonUSA

Personalised recommendations