Skip to main content

Pulmonary Carbonic Anhydrase and the Release of Carbon Dioxide from Plasma Bicarbonate

  • Chapter
The Regulation of Respiration During Sleep and Anesthesia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 99))

Abstract

Although red cells contain a considerable excess of carbonic anhydrase1, 2, 3 evidence has been obtained that the enzyme is not accessible to carbonic acid in the plasma4. A number of investigators have hypothesized that the absence of carbonic anhydrase in the plasma is responsible for a persistent disequilibrium between bicarbonate and carbon dioxide throughout the circulation4–9. The consequences of such disequilibrium in the pulmonary vasculature are shown in Figure 1. The passage of carbon dioxide from the plasma and red cells to alveolar gas is followed by the rapid conversion of HCO -3 to CO2 within the red cells. This reaction proceeds at a much slower rate in the plasma because the reaction is uncata1yzed in plasma. Plasma HC0 -3 diffuses into the red cells in exchange for C1- (Hamburger Shift) and then combines with the hydrogen ions within the red cell to form additional H2C03 and CO2 , Although the latter reactions result in the consumption of H+ within the red cells, the pH of plasma remains unchanged. Movement of both H+ and OH- across the red cell membrane is reportedly very slow10 and the rate at which equilibration occurs between red cell and plasma pH appears to be limited by the uncatalyzed conversion of H2C03 to CO2 in the plasma4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meldrum, N.V. and Roughton, F.J.W.: Carbonic anhydrase. Its preparation and properties. J. Physiol. (London) 80:113–142, 1933.

    Google Scholar 

  2. Stadie, W.C. and O’Brien, H.: The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J. Biol. Chem. 103: 521–529, 1933.

    Google Scholar 

  3. Maren, T.H.: Carbonic anhydrase: chemistry, physiology and inhibition. Physiol. Rev. 47:597–781, 1967.

    Google Scholar 

  4. Forster, R.E. and Crandall, E.D.: Time course of exchange between red cells and extracellular fluid during C02 uptake. J. Appl. Physiol. 38:710–718, 1975.

    PubMed  Google Scholar 

  5. Roughton, F.J.W.: Recent work on carbon dioxide transport by the blood. Physiol. Rev. 15:241–296, 1935.

    Google Scholar 

  6. Hill, E.P., Power, G.G. and Longo, L.D.: Mathematical simulation of pulmonary 02 and C02 exchange. Am. J. Physiol. 224:904–917, 1973.

    PubMed  Google Scholar 

  7. Sirs, J.A.: The interaction of carbon dioxide with the rate of exchange of oxygen by red blood cells. In: Blood Oxygenation, edited by D. Hershey. Plenum Press, New York, 1970, pp. 116–

    Google Scholar 

  8. Hill, E.B., Power, G.G. and Gilbert, R.D.: Rate of pH changes in blood plasma in vitro and in vivo. J. Appl. Physiol. 42:928–934, 1977.

    PubMed  Google Scholar 

  9. Filley, G.F. and Heineken, F.G.: A blood gas disequilibrium theory. Br. J. Dis. Chest. 70:223–245, 1976.

    Article  PubMed  Google Scholar 

  10. Crandall, E.D., Klocke, R.A. and Forster, R.E.: Hydroxyl ion movements across the human erythrocyte membrane. J. Gen. Physiol. 57:664–683, 1971.

    Article  PubMed  Google Scholar 

  11. Donnan, R.B.C., Bromberg, P.A., Theodore, J., Robin, E.D. and Jensen, W.N.: Anion and hydrogen ion distribution in human blood. J. Lab. Clin. Med. 66:464, 1956.

    Google Scholar 

  12. Berfenstam, R.: Carbonic anhydrase in fetal organs. Acta Paediatr. 41:310–315, 1952.

    Article  PubMed  Google Scholar 

  13. Chinard, F.P., Enns, T. and Nolan, M.F.: The permeability characteristics of the alveolar capillary barrier. Trans. Assoc. Am. Physicians Phila. 75:253–261, 1962.

    Google Scholar 

  14. Fisher, D.A.: Carbonic anhydrase activity in fetal and young rhesus monkeys. Proc. Soc. Exp. Biol. Med. 107:359–363, 1961.

    PubMed  Google Scholar 

  15. Adamson, T.M. and Waxman, B.P.: Carbonate dehydratase (carbonic anhydrase) and the fetal lung in C02 stores and C02 transport. In: Lung Liquids, edited by C.J. Dickenson. Elsevier, Amsterdam, 1976, pp. 221–234.

    Google Scholar 

  16. Chinard, F.P.: Permeability of the alveolar-capillary barrier to dissolved carbon dioxide and to bicarbonate ion. In: CO 2: Chemical, Biochemical and Physiological Aspects, edited by R.E. Forster, J.T. Edsall and F.J.W. Roughton. NASA, Washington,D.C., 1969; pp. 247–256.

    Google Scholar 

  17. Dubois, A.B., Fenn, W.O. and Britt, A.G.: C02 dissociation curve of lung tissue. J. Appl. Physiol. 5:13–16, 1952.

    Google Scholar 

  18. Hyde, R.W., Puy, R.J.M., Raub, W.F. and Forster, R. E.: Rate of disappearance of labeled carbon dioxide from the lungs of humans during breath holding: a method for studying the dynamics of pulmonary C02 exchange. J. Clin. Invest. 47: 1535–1552, 1968.

    Article  PubMed  Google Scholar 

  19. Farhi, L.E., Plewes, J.E. and Olszowka, A.J.: Lung carbonate dehydratase (carbonic anhydrase), C02 stores and C02 transport. In: Lung Liquids, edited by C.J. Dickenson. Elsevier, Amsterdam, 1976, pp. 235–249.

    Google Scholar 

  20. Fain, W. and Rosen, S.: Carbonic anhydrase activity in amphibian and reptilian lung: a histochemical and biochemical analysis. Histochem J. 5:519–528; 1973.

    Article  PubMed  Google Scholar 

  21. Muther, T.F.: A critical evaluation of the histochemical method for carbonic anhydrase. J. Histochem. Cytochem. 20:319–330, 1972.

    Article  PubMed  Google Scholar 

  22. Enns, T.: Facilitation by carbonic anhydrase of carbon dioxide transport. Science 155:44–47, 1967.

    Article  PubMed  Google Scholar 

  23. 0lver, R.E. and Strang, L.B.: Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the fetal lamb. J. Physiol. (London) 241:327–357, 1974.

    PubMed  Google Scholar 

  24. Olver, R. E., Davis, B., Maren, G. and Nadel, J.A.: Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am. Rev. Resp. Dis. 112:811–815, 1975.

    PubMed  Google Scholar 

  25. Chinard, F.P., Enns, T. and Nolan, M.F.: Contributions of bicarbonate ion and of dissolved C02 to expired C02 in dogs. Am. J. Physiol. 198:78–88, 1960.

    PubMed  Google Scholar 

  26. Soni, J., Feisal, K.A. and Dubois, A.B.: The rate of intrapulmonary blood gas exchange in living animals. J. Clin. Invest. 42:16–23, 1963.

    Article  PubMed  Google Scholar 

  27. Feisal, K.A., Sackner, M.A. and Dubois, A.B.: Comparison between the time available and the time required for C02 equilibration in the lung. J. Clin. Invest. 42:24–28, 1963.

    Article  PubMed  Google Scholar 

  28. Effros, R.M., Haider, B., Ettinger, P.O., Ahmed, S.S., Oldewurtel, H.A., Marold, K. and Regan, T.J.: In vivo myocardial cell pH in the dog. J. Clin. Invest. 55:1100–1110, 1975.

    Article  PubMed  Google Scholar 

  29. Effros, R.M., Chang, R.S.Y. and Silverman, P.: Comparison of single transit and equilibration studies of 22Na+ distribution in the lung. Chest 71S:296S–298S, 1977.

    Google Scholar 

  30. Effros, R.M., Chang, R.S.Y. and Silverman, P.: Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science (in press).

    Google Scholar 

  31. Perl, W., Effros, R.M. and Chinard, F.P.: Indicator equivalence theorem for input rates and regional masses in multiinlet steady state systems with partially labeled input. J. Theoret. Biol. 25:297–316, 19691969.

    Article  Google Scholar 

  32. Renkin, E.M.: Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscle. Am. J. Physiol. 197:1205–1210, 1959.

    PubMed  Google Scholar 

  33. Crone, C.: The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol. Scand. 54:292–305, 1963.

    Article  Google Scholar 

  34. Hodgen, G.D. and Falk, R.J.: A radiotracer assay for carbonic anhydrase. Int. J. Appl. Rad. Iso. 22:492–495, 1971.

    Article  Google Scholar 

  35. Gunn, R.B., Dalmark, M., Tosteson, D.C. and Wieth, J.O.: Characteristics of chloride transport in human red cells. J. Gen. Physiol. 61:185–206, 1973.

    Article  PubMed  Google Scholar 

  36. Lonnerholm, G.: Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand. 81:433–439, 1971.

    Article  PubMed  Google Scholar 

  37. Rector, F.C., Jr., Carter, N.W. and Seldin, D.W.: The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. Clin. Invest. 44:278-290, 1965.

    Google Scholar 

  38. Vieira, F.L. and Malnic, G.: Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am. J. Physiol. 214:710–718, 1963.

    Google Scholar 

  39. Junod, A.F.: Metabolism, production and release of hormones and mediators in the lung. Am. Rev. Resp. Dis. 112:93–108, 1975.

    PubMed  Google Scholar 

  40. Ryan, J.W., Smith, V. and Niemeyer, R.S.: Angiotension I:Metabolism by plasma membrane of lung. Science 176:64–66, 1972.

    Article  PubMed  Google Scholar 

  41. Crandall, E.D., Bidani, A. and Forster, R.E.: Post-capillary changes in blood pH _in v-during carbonic anhydrase inhibition. (In press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Effros, R.M. (1978). Pulmonary Carbonic Anhydrase and the Release of Carbon Dioxide from Plasma Bicarbonate. In: Fitzgerald, R.S., Gautier, H., Lahiri, S. (eds) The Regulation of Respiration During Sleep and Anesthesia. Advances in Experimental Medicine and Biology, vol 99. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4009-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4009-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4011-9

  • Online ISBN: 978-1-4613-4009-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics