Renal Hemodynamic Factors and the Regulation of Sodium Excretion

  • Jay H. Stein
  • Norbert H. Lameire
  • Laurence E. Earley

Abstract

It may seem surprising that a textbook concerned with membrane transport processes includes a chapter on renal hemodynamics and related factors. However, it has been clearly demonstrated that apparent changes in peritubular capillary hydrostatic and oncotic pressure may have a profound effect on tubular transport of sodium and water.(1–4) In addition, it has been suggested that alterations in the intrarenal distribution of renal blood flow may modify tubular sodium transport in normal and pathophysiologic states.(5)

Keywords

Filtration Albumin Dopamine Bicarbonate Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Earley, L. E., and R. M. Friedler. 1965. The effects of combined renal vasodilatation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J. Clin. Invest. 45: 542–551.CrossRefGoogle Scholar
  2. 2.
    Martino, J. A., and L. E. Earley. 1967. Demonstration of role of physical factors as determinants of natriuretic response to volume expansion. J. Clin. Invest. 46: 1963–1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Martino, J. A., and L. E. Earley. 1968. Relationship between intrarenal hydrostatic pressure and hemo- dynamically induced changes in sodium excretion. Circ. Res. 23: 371–386.PubMedGoogle Scholar
  4. 4.
    Brenner, B. M., K. H. Falchuk, R. I. Keimowitz, and R. W. Berliner. 1969. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. Clin. Invest. 48: 1519–1531.PubMedCrossRefGoogle Scholar
  5. 5.
    Barger, A. C. 1966. Renal hemodynamic factors in congestive heart failure. Ann. N.Y. Acad. Sci. 139: 276–284.PubMedCrossRefGoogle Scholar
  6. 6.
    Earley, L. E., and R. W. Schcrier. 1973. Intrarenal control of sodium excretion by hemodynamic and physical factors. In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff and R. W. Berliner, eds. Am. Physiol. Soc., Washington, D.C. pp. 721–762.Google Scholar
  7. 7.
    Schlier, R. W., and H. E. de Wardener. 1971. Tubular reabsorption of sodium ion: Influence of factors other than aldosterone and glomerular filtration rate. N. Engl. J. Med. 285: 1231–1243.CrossRefGoogle Scholar
  8. 8.
    Schnermann, J. 1974. Physical forces and transtubular movement of solute and water. In: MTP International Review of Science, Kidney and Urinary Tract Physiology. K. Thurau, ed. Univ. Park Press, Baltimore, pp. 157–198.Google Scholar
  9. 9.
    Stein, J. H., S. Boonjarern, C. B. Wilson, and T. F. Ferris. 1973. Alterations in intrarenal blood flow distribution: Methods of measurement and relationship to sodium balance. Circ. Res. Suppl. 332–333:I-61–I-71.Google Scholar
  10. 10.
    Ludwig, C. Nieren and Harnbereitung. 1844. Handwörterbuch der Physiologie, Vol. 2. Rudolph Wanger, ed. F. Vieweg and Son, Braunschweig, p. 628.Google Scholar
  11. 11.
    Ludwig, C. 1861. Lehrbuch der Physiologie des Menschen. C. F. Winker, Heidelberg, p. 428.Google Scholar
  12. 12.
    Starling, E. H. 1908. The Fluids of the Body. Keener, Chicago.Google Scholar
  13. 13.
    Symposium on membrane transport in the kidney. 1976. G. Giebisch and R. W. Berliner, eds. Kidney Int. 9: 63–230.Google Scholar
  14. 14.
    Buig, M., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224: 659–668.Google Scholar
  15. 15.
    Rocha, A. S., and J. P. Kokko. 1973. Sodium chloride and water transport in the medullary thick ascending limb of Henle: Evidence for active chloride transport. J. Clin. Invest. 52: 612–623.PubMedCrossRefGoogle Scholar
  16. 16.
    Green, R., E. E. Windhager, and G. Giebisch. 1974. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am. J. Physiol. 226: 265–276.PubMedGoogle Scholar
  17. 17.
    Brenner, B. M., J. L. Troy, and T. M. Daugharty. 1971. Dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50: 1776–1780.PubMedCrossRefGoogle Scholar
  18. 17a.
    Brenner, B. M., W. M. Deen, and C. R. Robertson. 1973. The physiologic basis of glomerular ultrafiltration. In: Kidney and Urinary Tract Physiology, Vol. 6. K. Thurau, ed. Univ. Park Press, Baltimore, pp. 336–354.Google Scholar
  19. 18.
    Deen, W. M., J. L. Troy, C. R. Robertson, and B. M. Brenner. 1973. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J. Clin. Invest. 52: 1500–1508.PubMedCrossRefGoogle Scholar
  20. 19.
    Ott, C. E., G. R. Marchard, J. A. Oraz-Buza, J. L. Cuche, and F. G. Knox. 1975. Micropuncture evidence for filtration pressure disequilibrium in the dog. Clin. Res. 23: 371 (Abstr.).Google Scholar
  21. 20.
    Deen, W. M., C. R. Robertson, and B. M. Brenner. 1973. Model of peritubular capillary control of isotonic fluid reabsorption by the renal proximal tubule. Biophys. J. 13: 340–358.PubMedCrossRefGoogle Scholar
  22. 21.
    Blantz, R. C., and B. J. Tucker. 1975. Determinants of peritubular capillary fluid uptake in hydropenia and saline and plasma expansion. Am. J. Physiol. 228: 1927–1935.PubMedGoogle Scholar
  23. 22.
    Bresler, E. H. 1956. Problem of volume component of body fluid homeostasis. Am. J. Med. Sci. 232: 93–104.PubMedCrossRefGoogle Scholar
  24. 23.
    Starling, E. H., and E. B. Verney. 1925. The secretion of urine as studied on the isolated kidney. Proc. R. Soc. Lond. (Biol.) 97: 321–363.CrossRefGoogle Scholar
  25. 24.
    Selkurt, E. E. 1951. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4: 541–551.PubMedGoogle Scholar
  26. 25.
    Selkurt, E. E., P. W. Hall, and M. P. Spencer. 1949. Influence of graded arterial pressure decrement on renal clearance of creatinine, p-aminohippurate and sodium. Am. J. Physiol. 159: 369–378.PubMedGoogle Scholar
  27. 26.
    Shipley, R. E., and R. S. Study. 1951. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of rend artery blood pressure. Am. J. Physiol. 167: 676–688.PubMedGoogle Scholar
  28. 27.
    Pitts, R. F., and J. J. Duggan. 1950. Studies on diuretics; relationship between glomerular filtration rate, proximal tubular absorption and diuretic efficacy of mercurials. J. Clin. Invest. 29: 372–379.PubMedCrossRefGoogle Scholar
  29. 28.
    Blake, W. D., R. Wegria, H. P. Ward, and C. W. Frank. 1950. Effect of renal arterial constriction on excretion of sodium and water. Am. J. Physiol. 163: 422–429.PubMedGoogle Scholar
  30. 29.
    Mueller, C. B., A. Surtshin, M. R. Carlin, and H. L. White. 1951. Glomerular and tubular influences on sodium and water excretion. Am. J. Physiol. 165: 411–422.PubMedGoogle Scholar
  31. 30.
    Craig, G. M., I. H. Mills, G. W. Osbaldiston, and B. L. Wise. 1966. The effect of change in perfusion pressure and hematocrit in the perfused isolated dog kidney. Proc. Phys. Soc. Lond. 186: 113–114.Google Scholar
  32. 31.
    Selkurt, E. E., I. Womack, and W. N. Dailey. 1965. Mechanism of natriuresis and diuresis during elevated renal arterial pressure. Am. J. Physiol. 209: 95–99.PubMedGoogle Scholar
  33. 32.
    Daugharty, T. M., L. J. Belleau, J. A. Martino, and L. E. Earley. 1968. Interrelationship of physical factors affecting sodium reabsorption in dog. Am. J. Physiol. 215: 1442–1447.PubMedGoogle Scholar
  34. 33.
    Navar, L. G. 1972. Distal nephron diluting segment responses to altered arterial pressure and saline loading. Am. J. Physiol. 22: 945–952.Google Scholar
  35. 34.
    Aperia, A. C., C. G. O. Broberger, and S. Soderlund. 1971. Relationship between renal artery perfusion pressure and tubular sodium reabsorption. Am. J. Physiol. 220: 1205–1212.PubMedGoogle Scholar
  36. 35.
    Bank, N., H. S. Aynedjian, V. K. Bansal, and D. M. Goldman. 1970. Effect of acute hyertension on so-dium transport by the distal nephron. Am. J. Physiol. 219: 275–280.PubMedGoogle Scholar
  37. 36.
    Earley, L. E., J. A. Martino, and R. M. Friedler. 1966. Factors affecting sodium reabsorption by proximal tubule as determined during blockade of distal sodium reabsorption. J. Clin. Invest. 45: 1668–1684.PubMedCrossRefGoogle Scholar
  38. 37.
    Nizet, A. 1968. Influence of serum albumin and dextran on sodium and water excretion by the isolated dog kidney. Arch. Ges. Physiol. 301: 7–15.CrossRefGoogle Scholar
  39. 38.
    Nizet, A., J. P. Godon, and P. Mahieu. 1968. Quantitative excretion of water and sodium load by isolated dog kidney: Autonomous renal response to blood dilution factors. Arch. Ges. Physiol. 304: 30–45.CrossRefGoogle Scholar
  40. 39.
    Schrier, R. W., and L. E. Earley. 1970. Effects of hematocrit on renal hemodynamics and sodium excretion in hydroepnic and volume-expanded dogs. J. Clin. Invest. 49: 1656–1667.PubMedCrossRefGoogle Scholar
  41. 40.
    Schrier, R. W., K. M. McDonald, R. E. Wells, and D. P. Lauler. 1970. Influence of hematocrit and colloid on whole blood viscosity during volume expansion. Am. J. Physiol. 218: 346–352.PubMedGoogle Scholar
  42. 41.
    Bowman, R. H., and T. Maack. 1974. Effect of albumin concentration and ADH on H2O and electrolyte transport in perfused rat kidney. Am. J. Physiol. 226: 426–430.PubMedGoogle Scholar
  43. 42.
    Little, J. R., and J. J. Cohen. 1974. Effect of albumin concentration on function of isolated perfused rat kidney. Am. J. Physiol. 226: 512–517.PubMedGoogle Scholar
  44. 43.
    Goodyer, A. V., E. R. Peterson, and A. S. Relman. 1949. Some effects of albumin infusions on renal function and electrolyte excretion in normal man. J. Appl. Physiol. 1: 671–682.PubMedGoogle Scholar
  45. 44.
    Welt, L. G., and J. Orloff. 1951. Effects of increase in plasma volume on metabolism and excretion of water and electrolytes by normal subjects. J. Clin. Invest. 30: 751–761.PubMedCrossRefGoogle Scholar
  46. 45.
    Petersdorf, R. G., and L. G. Welt. 1953. The effect of an infusion of hyperoncotic albumin on the excretion of water and solutes. J. Clin. Invest. 32: 283 - 291.PubMedCrossRefGoogle Scholar
  47. 46.
    Vogel, G., and E. Heym. 1956. Untersuchungen zur Bedeutung kolloidosmotischer Druckdifferenzen fur den Mechanismus der isosmotischen Flussigkeitsresorption in der Niere. Arch. Ges. Physiol. 262: 226–232.CrossRefGoogle Scholar
  48. 47.
    Vogel, G., E. Heym, and K. Anerossohn. 1955. Versuche zur Bedeutung kolloidosmotischer Druckdifferenzen fur einen passiven Transportmechanismus in den Nierenkanalchen. Z. Ges. Exp. Med. 126: 485–495.PubMedCrossRefGoogle Scholar
  49. 48.
    Vereerstraeten, P., and M. De Myttenaere. 1968. Effect of raising the transtubular oncotic gradient on sodium excretion in the dog. Arch. Ges. Physiol. 302: 1–12.CrossRefGoogle Scholar
  50. 49.
    Vereerstraeten, P., and C. Toussaint. 1965. Réduction de la natriurèse par la perfusion d’albumine dans la veine porte rénale du coq. Nephron 2: 355–366.PubMedCrossRefGoogle Scholar
  51. 50.
    Earley, L. E. 1964. Effect of renal arterial infusion of albumin on saline diuresis in the dog. Proc. Soc. Exp. Biol. Med. 116: 262–265.PubMedGoogle Scholar
  52. 51.
    Koch, K. M., H. S. Aynedjian, and N. Bank. 1968. Effect of acute hypertension on sodium reabsorption by proximal tubule. J. Clin. Invest. 47: 1696–1709.PubMedCrossRefGoogle Scholar
  53. 52.
    Nakajima, K., J. R. Clapp, and R. R. Robinson. 1970. Limitations of the shrinking drop micropuncture technique. Am. J. Physiol. 217: 992–991.Google Scholar
  54. 53.
    Dresser, T. P., R. E. Lynch, E. G. Schneider, and F. G. Knox. 1971. Effect of increases in blood pressure on pressure and reabsorption in the proximal tubule. Am. J. Physiol. 220: 444–447.PubMedGoogle Scholar
  55. 54.
    Falchuk, K. H., B. M. Brenner, M. Tadokoro, and R. W. Berliner. 1971. Oncotic and hydrostatic pressures in peritubular capillaries and fluid reabsorption by proximal tubules. Am. J. Physiol. 220: 1427–1433.PubMedGoogle Scholar
  56. 55.
    Liebau, G., D. Z. Levine, and K. Thurau. 1968. Micropuncture studies on the dog. I. The response of the proximal tubule to changes in systemic blood pressure within and below the autoregulatory range. Pfluegers Arch. Ges. Physiol. 304: 57–68.CrossRefGoogle Scholar
  57. 56.
    Hayslett, J. P. 1973. Effect of changes in hydrostatic pressure in peritubular capillaries on the permeability of the proximal tubule. J. Clin. Invest. 52: 1314–1319.PubMedCrossRefGoogle Scholar
  58. 57.
    DiBona, G. F., G. J. Kaloyanides, and R. D. Bastron. 1973. Effect of increased perfusion pressure on proximal tubular reabsorption in the isolated kidney. Proc. Soc. Exp. Biol. Med. 143: 830–834.PubMedGoogle Scholar
  59. 58.
    Lameire, N. H., and R. T. Kunau, Jr. 1976. The effect of an increase in renal perfusion pressure on sodium transport in the rat kidney. Clin. Res. 24: 56A.Google Scholar
  60. 59.
    Stumpe, K. O., H. D. Lowitz, and B. Ochwadt. 1969. Function of juxtamedullary nephrons in normotensive and chronically hypertensive rats. Pfluegers Arch. Ges. Physiol. 313: 43–52.CrossRefGoogle Scholar
  61. 59a.
    Stumpe, K. O., H. D. Lowitz, and B. Ochwadt. 1970. Fluid reabsorption in Henle’s loop and urinary excretion of sodium and water in normal rats and rats with chronic hypertension. J. Clin. Invest. 49: 1200–1212.PubMedCrossRefGoogle Scholar
  62. 60.
    Burke, T. J., R. R. Robinson, and J. R. Clapp. 1971. Effect of arterial hematocrit on sodium reabsorption by the proximal tubule. Am. J. Physiol. 220: 1536–1541.PubMedGoogle Scholar
  63. 61.
    Knox, F. G., S. S. Howards, F. S. Wright, B. B. Davis, and R. W. Berliner. 1968. Effects of dilution and expansion of blood volume on proximal sodium reabsorption. Am. J. Physiol. 215: 1041–1048.PubMedGoogle Scholar
  64. 62.
    Kashgarian, J., Y. Warren, R. L. Mitchell, and F. H. Epstein. 1964. Effect of protein in tubular fluid upon proximal tubular absorption. Proc. Soc. Exp. Biol. Med. 117: 448–450.Google Scholar
  65. 63.
    Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, and E. E. Windhager. 1964. Sodium movement across single perfused proximal tubules of rat kidneys. J. Gen. Physiol. 47: 1175–1194.PubMedCrossRefGoogle Scholar
  66. 64.
    Whittembury, G., D. E. Oken, E. E. Windhager, and A. K. Solomon. 1959. Single proximal tubules of Necturus kidney. IV. Dependence of H20 movement on osmotic gradients. Am. J. Physiol. 197: 1121–1127.PubMedGoogle Scholar
  67. 65.
    Persson, A. E. G., B. Agerup, and J. Schnermann. 1972. The effect of luminal application of colloids on rat proximal tubular net fluid flux. Kidney Int. 2: 203–213.PubMedCrossRefGoogle Scholar
  68. 66.
    Lewy, J. E., and E. E. Windhager. 1968. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Physiol. 214: 943–954.PubMedGoogle Scholar
  69. 67.
    Spitzer, A., and E. E. Windhager. 1970. Effect of peritubular oncotic pressure changes on proximal fluid reabsorption. Am. J. Physiol. 218: 1188–1193.PubMedGoogle Scholar
  70. 68.
    Daugharty, T. M., I. F. Ueki, D. P. Nicholas, and B. M. Brenner. 1972. Comparative renal effects of ison- cotic and colloid-free volume expansion in the rat. Am. J. Physiol. 222: 225–235.PubMedGoogle Scholar
  71. 69.
    Brenner, B. M., and J. L. Troy. 1971. Post-glomerular vascular protein concentration: Evidence for a casual role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. Clin. Invest. 50: 336–349.PubMedCrossRefGoogle Scholar
  72. 70.
    Brenner, B. M., J. L. Troy, and T. M. Daugharty. 1971. On the mechanism of inhibition in fluid reabsorption by the renal proximal tubule of the volume expanded rat. J. Clin. Invest. 50: 1596–1602.PubMedCrossRefGoogle Scholar
  73. 71.
    Seely, J. F. 1973. Effects of peritubular oncotic pres-sure on rat proximal tubule electrical resistance. Kidney Int. 4: 28–35.PubMedCrossRefGoogle Scholar
  74. 72.
    Boulpaep, E. L. 1972. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531.PubMedGoogle Scholar
  75. 73.
    Kuschinsky, W., M. Wahl, P. Wunderlich, and K. Thurau. 1970. Different correlations between plasma protein concentration and proximal fractional reabsorption in the rat during acute and chronic saline infusion. Pfluegers Arch. Ges. Physiol. 321: 102–120.CrossRefGoogle Scholar
  76. 74.
    Daugharty, T. M., I. F. Ueki, D. P. Nicholas, and B. M. Brenner. 1973. Renal response to chronic intravenous salt loading in the rat. J. Clin. Invest. 52: 21–31.PubMedCrossRefGoogle Scholar
  77. 75.
    Holzgreve, H., and R. W. Schrier. 1975. Evaluation of peritubular capillary microperfusion method by morphological and functional studies. Pfluegers Arch. Ges. Physiol. 356: 59–71.CrossRefGoogle Scholar
  78. 76.
    Conger, J. D., E. Bartoli, and L. E. Earley. 1973. No effect of peritubular plasma protein on proximal tubular volume absorption during capillary perfusion in vivo. Proc. Am. Soc. Nephrol. 4: 25.Google Scholar
  79. 77.
    Ott, C., J. A. Haas, J. L. Cuche, and F. G. Knox. 1975. Effect of increaed peritubular protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J. Clin. Invest. 55: 612–620.PubMedCrossRefGoogle Scholar
  80. 78.
    de Bermudez, L., and E. E. Windhager. 1975. Osmotically induced changes in electrical resistance of distal tubules of rat kidney. Am. J. Physiol. 229: 1536–1546.PubMedGoogle Scholar
  81. 79.
    Onstad, G. R., L. J. Schoenfield, and J. A. Higgins. 1967. Fluid transfer in the everted human gallbladder. J. Clin. Invest. 46: 606–614.PubMedCrossRefGoogle Scholar
  82. 80.
    Dietschy, J. M. 1964. Water and solute movement across the wall of the everted rabbit gall bladder. Gastroenterology 47: 395–408.PubMedGoogle Scholar
  83. 81.
    Nutbourne, D. M. 1968. The effect of small hydro-static pressure gradients on the rate of active sodium transport across isolated living frog-skin membranes. J. Physiol. (Lond.) 195: 1–18.Google Scholar
  84. 82.
    Walser, M. 1969. Reversible stimulation of sodium transport in the toad bladder by stretch. J. Clin. Invest. 48: 1714–1723.PubMedCrossRefGoogle Scholar
  85. 83.
    Hakim, A. A., and N. Lifson. 1969. Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am. J. Physiol. 216: 276–284.PubMedGoogle Scholar
  86. 84.
    Imai, M., and J. P. Kokko. 1972. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proximal tubules. J. Clin. Invest. 51: 314–325.PubMedCrossRefGoogle Scholar
  87. 85.
    Grantham, J. J., P. B. Qualizza, and L. W. Welling. 1972. Influence of serum proteins on net fluid reabsorption of isolated proximal tubules. Kidney Int. 2: 66–75.PubMedCrossRefGoogle Scholar
  88. 86.
    Horster, M., M. Burg, D. Zotts, and J. Orloff. 1973. Fluid absorption by proximal tubules in the absence of a colloid osmotic gradient. Kidney Int. 4: 6–11.PubMedCrossRefGoogle Scholar
  89. 87.
    Burg, M. 1975. Mechanism of fluid absorption by proximal convoluted tubules. In: Proceedings of the Sixth International Congress on Nephrology, Florence, Italy. Karger, Basel.Google Scholar
  90. 88.
    Earley, L. E., and R. M. Friedler. 1965. Changes in renal blood flow and possibly intrarenal distribution of blood during natriuresis accompanying saline loading in the dog. J. Clin. Invest. 44: 929–941.PubMedCrossRefGoogle Scholar
  91. 89.
    Stein, J. H., R. W. Osgood, and T. F. Ferris. 1972. Effect of volume expansion on distribution of glomerular filtrate and renal cortical blood flow in the dog. Am. J. Physiol. 223: 984–990.PubMedGoogle Scholar
  92. 90.
    de Wardener, H. E., I. H. Mills, W. F. Clapham, and C. J. Hayter. 1961. Studies on the efferent mechanisms of the odium diuresis which follows the administration of intravenous saline in the dog. Clin. Sci. 21: 249–258.Google Scholar
  93. 91.
    Levinsky, N. G., and R. C. Lalone. 1963. Mechanism of sodium diuresis after saline infusion in dog. J. Clin. Invest. 42: 1261–1276.PubMedCrossRefGoogle Scholar
  94. 92.
    Stein, J. H., and H. J. Reineck. 1975. Effect of alterations in extracellular fluid volume on segmental sodium transport. Physiol. Rev. 55: 127–141.Google Scholar
  95. 93.
    Fitzgibbons, J. P., F. J. Gennari, H. B. Garflnkel, and S. Cortell. 1974. Dependence of saline induced natri-uresis upon exposure of the kidney to the physical effects of extracellular fluid volume expansion. J. Clin. Invest. 54: 1428–1436.PubMedCrossRefGoogle Scholar
  96. 94.
    Garcia, J. A., R. W. Osgood, and J. H. Stein. 1975. Differences in the effect of immediate versus delayed aortic clamping on proximal tubular sodium reabsorption and sodium excretion during extracellular volume expansion. Proceedings of the American Society of Nephrology, p. 80 (Abstr.).Google Scholar
  97. 95.
    Osgood, R. W., J. H. Stein, and R. T. Kunau. 1976. Direct measurement of papillary collecting duct sodium and potassium transport during saline diuresis in the rat. Evidence for functional nephron heterogeneity. Clin. Res. 24: 469A (Abstr.).Google Scholar
  98. 96.
    Earley, L. E., and R. M. Friedler. 1964. Observations on the mechanism of decreased tubular reabsorption of sodium and water during saline loading. J. Clin. Invest. 43: 1928–1937.CrossRefGoogle Scholar
  99. 97.
    Cushny, A. R. 1917. The Secretion of Urine. Long-mans, Green, New York.Google Scholar
  100. 98.
    Dirks, J. H., W. J. Cirksena, and R. W. Berliner. 1965. Effects of saline infusion on sodium reabsorption by proximal tubule of dog. J. Clin. Invest. 44: 1160–1170.PubMedCrossRefGoogle Scholar
  101. 99.
    Walker, A., P. A. Bott, J. Oliver, and M. C. MacDowell. 1941. Collection and analysis of fluid from single nephron of mammalian kidney. Am. J. Physiol. 134: 580–595.Google Scholar
  102. 100.
    Cortney, M. A., L. L. Sawin, and D. D. Weiss. 1970. Renal tubular protein absorption in the rat. J. Clin. Invest. 49: 1–4.PubMedCrossRefGoogle Scholar
  103. 101.
    Windhager, E. E., and G. Giebisch. 1976. Proximal sodium and fluid transport. Kidney Int. 9: 121–133.PubMedCrossRefGoogle Scholar
  104. 102.
    Grantham, J. 1973. Sodium transport in isolated renal tubules. In: Modern Diuretic Therapy in the Treatment of Cardiovascular and Renal Disease. Excerpta Medica, Amsterdam, pp. 220–228.Google Scholar
  105. 103.
    Earley, L. E., and R. M. Friedler. 1965. Studies on the mechanism of natriuresis accompanying increased renal blood flow and its role in the renal response to extracellular volume expansion. J. Clin. Invest. 44: 1857–1865.PubMedCrossRefGoogle Scholar
  106. 104.
    Diamond, J. M., and J. Tormey. 1966. Studies on the structural basis of water transport across epithelial membranes. Fed. Proc. 25: 1458–1463.PubMedGoogle Scholar
  107. 105.
    Diamond, J. M., and J. Tormey. 1966. Role of long extracellular channels in fluid transport across epithelia. Nature 210: 817–820.PubMedCrossRefGoogle Scholar
  108. 106.
    Curran, P. F., and J. R. Macintosh. 1962. Model system for biological water transport. Nature 193: 347–348.PubMedCrossRefGoogle Scholar
  109. 107.
    Schultz, S. G., and P. F. Curran. 1974. Sodium and chloride transport across isolated rabbit ileum. Curr. Top. Membr. Transport 5: 225–281.Google Scholar
  110. 108.
    DiBona, D. R., L. C. Chen, and G. W. Shaip. 1974. A study of intercellular spaces in the rabbit jejunum during acute volume expansion and after treatment with cholera toxin. J. Clin. Invest. 53: 1300–1307.PubMedCrossRefGoogle Scholar
  111. 109.
    Humphreys, M. H., and L. E. Earley. 1971. The mechanism of decreased intestinal sodium and water absorption after acute volume expansion in the rat. J. Clin. Invest. 50: 2355–2367.PubMedCrossRefGoogle Scholar
  112. 110.
    DiBona, D. R. 1972. Passive intercellular pathway in amphibian epithelia. Nature (New Biol.) 238: 179–181.CrossRefGoogle Scholar
  113. 111.
    DiBona, D. R., and M. M. Civan. 1973. Pathways for movement of ions and water across toad urinary bladder I. Anatomic site of transepithelial shunt pathways. J. Membr. Biol. 12: 101–128.PubMedCrossRefGoogle Scholar
  114. 112.
    Boulpaep, E. L. 1976. Recent advances in electrophysiology of the nephron. Physiol. Rev. 38: 20–36.CrossRefGoogle Scholar
  115. 113.
    Bank, N., W. E. Jarger, and H. S. Aynedjian. 1971. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction. J. Clin. Invest. 50: 294–302.PubMedCrossRefGoogle Scholar
  116. 114.
    Caulfield, J. B., and B. F. Trump. 1962. Correlation of ultrastructure with function in the rat kidney. Am. J. Pathol. 40: 199–218.PubMedGoogle Scholar
  117. 115.
    Leschke, K., C. Bentzel, and T. Z. Csaky. 1970. Asymmetry of osmotic flow in frog intestine: Functional and structural correlation. Am. J. Physiol. 218: 1723–1731.Google Scholar
  118. 116.
    Lifschitz, M. D., J. A. Garcia, and L. E. Earley. 1973. Effect of passive water absorption on transepithelial movement of extracellular solutes in rat intestine. Kidney Int. 4: 362–368.PubMedCrossRefGoogle Scholar
  119. 117.
    Stein, J. H., R. W. Osgood, S. Boonjarern, and T. F. Ferris. 1973. A comparison of the segmental analysis of sodium reabsorption during Ringer’s and hyperoncotic albumin infusion in the rat. J. Clin. Invest. 52: 2313–2323.PubMedCrossRefGoogle Scholar
  120. 118.
    Stein, J. H., R. W. Osgood, S. Boonjarern, J. Cox, and T. F. Ferris. 1974. Segmental analysis of sodium reabsorption in rats with mild and severe extracellular fluid volume depletion. Am. J. Physiol. 227: 351–360.PubMedGoogle Scholar
  121. 119.
    Auld, R., E. Alexander, and N. Levinsky. 1971. Proximal tubular function in dogs with thoracic caval constriction. J. Clin. Invest. 50: 2150–2158.PubMedCrossRefGoogle Scholar
  122. 120.
    Stein, J. H., R. C. Congbalay, D. L. Karsh, R. W. Osgood, and T. F. Ferris. 1972. The effect of bradykinin on proximal tubular sodium reabsorption: Evidence for functional nephron heterogeneity. J. Clin. Invest. 51: 1709–1721.PubMedCrossRefGoogle Scholar
  123. 121.
    Schneider, E. G., J. W. Strandhoy, L. R. Willis, and F. G. Knox. 1973. Relationship between proximal sodium reabsorption and excretion of calcium, magnesium, and phosphate. Kidney Int. 4: 369–376.PubMedCrossRefGoogle Scholar
  124. 122.
    de Wardener, H. E. 1973. The natriuretic hormone. Proc. Eur. Dialysis Transplant Assoc. 10: 3–19.Google Scholar
  125. 123.
    Hierholzer, K., and S. Lange. 1974. The effects of adrenal steroids on renal function. In: Kidney and Urinary Tract Physiology, Vol. 6. K. Thurau, ed. Univ. Park Press, Baltimore, pp. 273–319.Google Scholar
  126. 124.
    Kokko, J. P., and F. C. Rector, Jr. 1972. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214–223.PubMedCrossRefGoogle Scholar
  127. 125.
    Wirz, H., and R. N. Dirix. 1973. Urinary concentration and dilution. In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff and R. W. Berliner, eds. Am. Physiol. Soc., Washington, D.C. pp. 415–430.Google Scholar
  128. 126.
    Stein, J. H., T. F. Ferris, J. F. Huprich, T. C. Smith, and R. W. Osgood. 1971. Effect of renal vasodilatation on the distribution of cortical blood flow in the kidney of the dog. J. Clin. Invest. 50: 1429–1438.PubMedCrossRefGoogle Scholar
  129. 127.
    Goodyer, A. V. N., and C. A. Jaeger. 1955. Renal response to nonshocking hemorrhage. Role of the autonomic nervous system and of the renal circulation. Am. J. Physiol. 180: 69–74.PubMedGoogle Scholar
  130. 128.
    Thorburn, G. D., H. H. Kopald, J. A. Herd, M. Hollenberg, C. C. C. O’Morchoe, and A. C. Barger. 1963. Intrarenal distribution of nutrient blood flow determined with krypton-85 in the unanesthetized dog. Circ. Res. 13: 290–307.PubMedGoogle Scholar
  131. 129.
    McNay, J. L., and Y. Abe. 1970. Pressure-dependent heterogeneity of renal cortical blood flow in dogs. Circ. Res. 27: 571–587.PubMedGoogle Scholar
  132. 130.
    Burg, M. B., J. J. Grantham, J. Abramow, and J. Orloff. 1966. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298.PubMedGoogle Scholar
  133. 131.
    Hanssen, O. E. 1961. The relationship between glomerular filtration and length of the proximal convoluted tubule in mice. Acta Pathol. Microbiol. Scand. 53: 265–279.PubMedCrossRefGoogle Scholar
  134. 132.
    Bankir, L., and N. Farman. Hétérogénéité des glomerules chez le lapin. Arch. Anat. Microsc. Morp. Exp. 62: 287–291.Google Scholar
  135. 133.
    Carrière, S., P. Boulet, A. Mathieu, and M. G. Brunette. 1972. Isotonic saline loading and intrarenal distribution of glomerular filtration in dogs. Kidney Int. 2: 191–196.PubMedCrossRefGoogle Scholar
  136. 134.
    Fetterman, G. H., N. A. Shuplock, F. J. Phillip, and H. S. Gregg. 1965. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood. Pediatrics 35: 601–619.PubMedGoogle Scholar
  137. 135.
    Baines, A. D., and C. de Rouffignac. 1969. Functional heterogeneity of nephrons. II. Filtration rates, intra-luminal flow velocities and fractional water reabsorption. Pfluegers Arch. 308: 260–276.CrossRefGoogle Scholar
  138. 136.
    Coelho, J. B., Chien, K. C. H., and Bradley, S. E. 1972. Measurement of single nephron glomerular filtration rate without micropuncture. Am. J. Physiol. 223: 832–839.PubMedGoogle Scholar
  139. 137.
    Beeuwkes, R., and J. V. Bonventre. 1975. Tubular organization and vascular-tubular relations in the dog kidney. Am. J. Physiol. 229: 695–713.PubMedGoogle Scholar
  140. 138.
    Kriz, W. 1967. Der arthitektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch. Mikrosk. Anat. 82: 495–535.PubMedCrossRefGoogle Scholar
  141. 139.
    Rouffignac, C. de, S. Deiss, and J. P. Bonvalet. 1970. Determination du taux individuel de filtration glomerulaire des néphrons accessible et inaccessible à la microponction. Pfluegers Arch. Ges. Physiol. 315: 273–290.CrossRefGoogle Scholar
  142. 140.
    Horster, M., and K. Thurau. 1968. Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pfluegers Arch. Ges. Physiol. 301: 162–181.CrossRefGoogle Scholar
  143. 141.
    Stumpe, K. O., H. D. Lowitz, and B. Ochwadt. 1969. Function of juxtamedullary nephrons in normotensive and chronically hypertensive rats. Pfluegers Arch. 313: 43–52.CrossRefGoogle Scholar
  144. 142.
    Jamison, R. L. 1970. Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am. J. Physiol. 218: 46–55.PubMedGoogle Scholar
  145. 143.
    Jamison, R. L. 1972. Evidence for functional intrarenal heterogeneity obtained by micropuncture technique. Yale J. Biol. Med. 45: 254–262.PubMedGoogle Scholar
  146. 144.
    Baines, A. D. 1971. Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerulo-tubular balance in single rat nephrons. J. Clin. Invest. 50: 2414–2425.PubMedCrossRefGoogle Scholar
  147. 145.
    Rouffignac, C. de, and F. Morel. 1969. Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in Psammomys. J. Clin. Invest. 48: 474–486.PubMedCrossRefGoogle Scholar
  148. 146.
    Rouffignac, C. de, and J. P. Bonvalet. 1970. Etude chez le rat des variations du debit individuel de filtra-tion glomerulaire des nephrons superficiels et profonds en fonction de l’apport sode. Pfluegers Arch. 317: 141–156.CrossRefGoogle Scholar
  149. 147.
    Bonvalet, J. P., P. Bencsath, and C. de Rouffignac. 1972. Glomerular filtration rate of superficial and deep nephrons during aortic constriction. Am. J. Physiol. 222: 599–606.PubMedGoogle Scholar
  150. 148.
    Davis, J. M., and J. Schnermann. 1972. Juxtamedullary filtration rate and urinary concentrating ability. Int. Congr. Physiol. 9: 132 (Abstr.).Google Scholar
  151. 149.
    Stumpe, K. O., H. Solle, H. Klein, and F. Kriick. 1973. Mechanism of sodium and water retention in rats with experimental heart failure. Kidney Int. 4: 309–317.PubMedCrossRefGoogle Scholar
  152. 150.
    Poujeol, P., D. Chabardes, J. P. Bonvalet, and C. de Rouffignac. 1975. Glomerular filtration rate and microsphere distributions in single nephron of rat kidney. Pfluegers Arch. 357: 291–301.CrossRefGoogle Scholar
  153. 151.
    Bruns, F. J., E. A. Alexander, A. L. Riley, and N. G. Levinsky. 1974. Superficial and juxtamedullary nephron function during saline loading in the dog. J. Clin. Invest. 53: 971–979.PubMedCrossRefGoogle Scholar
  154. 152.
    Stein, J. H., L. J. Barton, H. Mandin, L. H. Lacker, F. C. Rector, Jr., and D. W. Seldin. 1969. Effect of extracellular volume expansion on proximal tubular sodium reabsorption and distribution of renal blood flow and glomerular filtrate in the dog. Clin. Res. 17: 449 (Abstr.).Google Scholar
  155. 153.
    Auld, R. B., E. A. Alexander, and N. G. Levinsky. 1970. Nephron filtration and proximal reabsorption during saline infusion, arterial clamping, and hemorrhage in the dog. J. Clin. Invest. 59: 5a (Abstr.).Google Scholar
  156. 154.
    Mandin, H., A. H. Israelit, F. C. Rector, Jr., and D. W. Seldin. 1971. Effect of saline infusions on intrarenal distribution of glomerular filtrate and proximal reabsorption in the dog. J. Clin. Invest. 50: 514–522.PubMedCrossRefGoogle Scholar
  157. 155.
    Kunau, R. T., Jr., H. L. Webb, and S. C. Borman. 1974. Characteristics of sodium reabsorption in the loop of Henle and distal tubule. Am. J. Physiol. 227: 1181–1191.PubMedGoogle Scholar
  158. 156.
    Bartoli, E., and L. E. Earley. 1972. Effects of saline infusion on glomerulo tubular balance. Kidney Int. 1: 67–77.PubMedCrossRefGoogle Scholar
  159. 157.
    Brenner, B. M., T. M. Daugharty, I. F. Ueki, and J. L. Troy. 1971. Quantitative assessment of proximal tubule function in single nephrons of the rat kidney. Am. J. Physiol. 220: 2058–2067.PubMedGoogle Scholar
  160. 158.
    Davidman, M., R, C. Lalone, E. Alexander, and N. G. Levinsky. 1971. Some micropuncture techniques in the rat. Am. J. Physiol 221: 1110–1114.PubMedGoogle Scholar
  161. 159.
    Andreucci, V. F., J. Herrera-Acosta, F. C. Rector, Jr., and D. W. Seldin. 1971. Measurement of single- nephron glomerular filtration rate by micropuncture: Analysis of error. Am. J. Physiol. 221: 1551–1559.PubMedGoogle Scholar
  162. 160.
    Bartoli, E., and L. E. Earley. 1971. The relative contribution of reabsorptive rate and redistributed nephron filtration rate to changes in proximal tubular fractional reabsorption during acute saline infusion and aortic constriction in the rat. J. Clin. Invest. 50: 2191–2203.PubMedCrossRefGoogle Scholar
  163. 161.
    Baines, A. D. 1973. Redistribution of nephron function in response to chronic and acute sodium loads. Am. J. Physiol. 224: 237–244.PubMedGoogle Scholar
  164. 162.
    Coelho, H. B., S. R. Stella, K. C. H. Chien, and S. E. Bradley. 1970. Glomerular filtration rate in superficial and juxtamedullary nephrons during salt loading and hemorrhagic hypotension. Clin. Res. 18: 496 (Abstr.).Google Scholar
  165. 163.
    Clausen, G., and I. Tysseboth. 1973. Intrarenal distribution of glomerular filtration in conscious rats during isotonic saline infusion. Acta Physiol. Scand. 89: 289–295.CrossRefGoogle Scholar
  166. 164.
    Chabardes, D., P. Poujeol, S. Deiss, J. P. Bonvalet, and C. de Rouffignac. 1974. Intrarenal glomerular filtration rate distribution in salt-loaded rats: A study of different techniques using ferrocyanide ions. Pfluegers Arch. 349: 191–202.CrossRefGoogle Scholar
  167. 165.
    Coelho, J. B. 1973. Effect of dietary sodium intake on the intrarenal distribution of nephron glomerular filtration rates in the rat. Circ. Res. 33: 457–554.Google Scholar
  168. 166.
    Coelho, J. B. 1974. Sodium metabolism and intrarenal distribution of nephron glomerular filtration rates in the unanesthetized rat. Proc. Soc. Exp. Biol. Med. 146: 225–231.PubMedGoogle Scholar
  169. 167.
    Hardaker, W. T., Jr., and A. J. Wechsler. 1973. Re-distribution of renal intracortical blood flow during dopamine infusion in dogs. Circ. Res. 33: 437–444.PubMedGoogle Scholar
  170. 168.
    Riley, R. L. 1974. Effects of acute changes in renal cortical blood flow distribution on renal function in dogs. In: Recent Advances in Renal Physiology and Pharmacology. L. G. Wesson and G. M. Ganelli, Jr., eds. Univ. Park Press, Baltimore, pp. 149–163.Google Scholar
  171. 169.
    Bailie, M. D., and J. A. Barbour. 1975. Effect of inhibition of peptidase activity on distribution of intrarenal blood flow. Am. J. Physiol. 228: 850–853.PubMedGoogle Scholar
  172. 170.
    Blantz, R. C., M. A. Katz, F. C. Rector, Jr., and D. W. Seldin. 1971. Measurement of intrarenal blood flow: II. Effect of saline diuresis in the dog. Am. J. Physiol. 220: 1914–1920.PubMedGoogle Scholar
  173. 171.
    Gutman, R. A., and C. W. Applegate. 1975. Renal intracortical blood flow distribution, function and sodium excretion in response to saline loading of anesthetized and unanesthetized dogs. Am. Soc. Nephrol. 81 (Abstr.).Google Scholar
  174. 172.
    Lameire, N. H., and S. Ringoir. 1974. The influence of furosemide on the distribution of renal blood flow in the normal and hypotensive dog. Kidney Int. 5:455 (Abstr.).CrossRefGoogle Scholar
  175. 173.
    Stein, J. H., R. C. Mauk, S. Boonjarern, and T. F. Ferris. 1972. Differences in the effect of furosemide and chlorothiazide on the distribution of renal cortical blood flow in the dog. J. Lab. Clin. Med. 79: 995–1003.PubMedGoogle Scholar
  176. 174.
    Zins, G. R. 1974. Alteration in renal function during vasodilation therapy. In: Recent Advances in Renal Physiology and Pharmacology. L. G. Wesson and G. M. Fanelli, Jr., eds. Univ. Park Press, Baltimore, pp. 165–186.Google Scholar
  177. 175.
    Abe, Y., T. Kishimoto, K. Yamamoto, and J. Ueda. 1973. Intrarenal distribution of blood flow during ureteral and venous pressure elevation. Am. J. Physiol. 224: 746–751.PubMedGoogle Scholar
  178. 176.
    Bay, W. H., J. H. Stein, J. B. Rector, R. W. Osgood, and T. F. Ferris. 1972. Redistribution of renal cortical blood flow during elevated ureteral pressure in the dog. Am. J. Physiol. 222: 33–37.PubMedGoogle Scholar
  179. 111.
    Lameire, N. H. 1975. Onderzoekingen over de aanpassingen van de doorbloedings-verdeling in de nierschors. Thesis, University of Ghent, pp. 1–395.Google Scholar
  180. 178.
    Lameire, N. H. 1974. Effect of autoregulation on the intracortical distribution of renal blood flow. Arch. Int. Physiol. Biochem. 82: 410–413.Google Scholar
  181. 179.
    Stein, J. H., S. Boonjarera, R. C. Mauk, and T. F. Ferris. 1973. Mechanism of the redistribution of renal cortical blood flow during hemorrhagic hypotension in the dog. J. Clin. Invest. 52: 39–47.PubMedCrossRefGoogle Scholar
  182. 180.
    Rector, J. B., J. H. Stein, W. H. Bay, R. W. Osgood, and T. F. Ferris. 1972. Effect of hemorrhage and vasopressor agents on distribution of renal blood flow. Am. J. Physiol. 222: 1125–1131.PubMedGoogle Scholar
  183. 181.
    McNay, J. L., and Y. Abe. 1970. Redistribution of cortical blood flow during renal vasodilatation in dogs. Circ. Res. 27: 1023–1032.PubMedGoogle Scholar
  184. 182.
    Kaloyanides, G. J., R. E. Ahrens, J. A. Shepherd, and G. F. DiBona. 1976. Inhibition of prostaglandin E2 secretion: Failure to abolish autoregulation in the isolated dog kidney. Circ. Res. 38: 67–73.PubMedGoogle Scholar
  185. 183.
    Lameire, N. H., and S. Ringoir. 1974. Effect of pros-taglandin synthesis inhibition on intracortical blood flow distribution during autoregulation of renal blood flow. IRCS 2: 1433.Google Scholar
  186. 184.
    Kirschenbaum, M. A., N. White, J. H. Stein, and T. F. Ferris. 1974. Redistribution of renal cortical blood flow during inhibition of prostaglandin synthesis. Am. J. Physiol. 227: 801–805.PubMedGoogle Scholar
  187. 185.
    Nissen, O. I. 1968. Changes in the filtration fractions in the superficial and deep venous drainage area of the cat kidney due to fluid loading. Acta Physiol. Scand. 73: 320–328.PubMedCrossRefGoogle Scholar
  188. 186.
    Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. 1975. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J. Clin. Invest. 55: 1269–1277.PubMedCrossRefGoogle Scholar
  189. 187.
    Jacobson, H. R., and J. P. Kokko. 1976. Intrinsic differences in various segments of the proximal con-voluted tubule. J. Clin. Invest. 57: 818–825.PubMedCrossRefGoogle Scholar
  190. 188.
    Barratt, L. J., F. C. Rector, Jr., J. P. Kokko, and D. W. Seldin. 1974. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Invest. 53: 454–464.PubMedCrossRefGoogle Scholar
  191. 189.
    Warnock, D. G., and Burg, M. B. 1975. Heterogeneity of CO2 transport in proximal straight tubules. Kidney Int. 8:492 (Abstr.).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Jay H. Stein
    • 1
  • Norbert H. Lameire
    • 1
  • Laurence E. Earley
    • 2
  1. 1.Department of MedicineUniversity of Texas Health Science CenterSan AntonioUSA
  2. 2.Department of MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations