Skip to main content

Membrane Proteins: Structure and Arrangement in the Membrane

  • Chapter
Physiology of Membrane Disorders

Abstract

The membranes of a cell have the principal function of setting the boundaries between the cell and the environment and between compartments within the cell. These boundaries prevent the movement of all polar solutes from one compartment to another, unless such movement is required for biological activity; under these circumstances, special transport systems are required. Thus membranes can be considered as structures which are selectively permeable. The barrier to movement of polar solutes across the membrane is provided by one of the two major components of the membrane: the lipids. The other major component of the membrane, the proteins, provides the permeability function. Membrane proteins also determine most of the other properties of a membrane: They carry the determinants of specificity which distinguish one cell from another and allow for recognition between cells; they determine the shape and architecture of the membrane; they are the receptors for information about the environment and relay that information to other parts of the cell; and they are enzymes with a precise compartmental localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guidotti, G. 1972. Membrane Proteins. Annu. Rev. Biochem. 41: 731 – 752.

    Article  PubMed  CAS  Google Scholar 

  2. Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805 – 833.

    Article  PubMed  CAS  Google Scholar 

  3. Clarke, S. 1975. The size and detergent binding of membrane proteins. J. Biol. Chem. 250: 5459 – 5469.

    PubMed  CAS  Google Scholar 

  4. Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62: 1 – 19.

    Article  PubMed  CAS  Google Scholar 

  5. Marchesi, V. T., H. Furthmayr, and M. Tomito. 1976. The red cell membrane. Annu. Rev. Biochem. 45:667– 698.

    Google Scholar 

  6. Bretscher, M. S. and M. C. Raff. 1975. Mammalian plasma membranes. Nature 258: 43 – 49.

    Article  PubMed  CAS  Google Scholar 

  7. Graham, J. M., R. O. Hynes, E. A. Davidson, and D. F. Bainton. 1975. The location of proteins labeled by the 125I-lactoperoxidase system in the NIL 8 hamster fibroblast. Cell 4: 353 – 366.

    Article  PubMed  CAS  Google Scholar 

  8. Elgsaeter, A., D. M. Shotton, and D. Branton. 1976. Intramembrane particle aggregation in erythrocyte ghosts, n. The influence of spectrin aggregation. Biochim. Biophys. Acta 426: 101 – 122.

    Article  PubMed  CAS  Google Scholar 

  9. Schechter, N. M., M. Sharp, J. A. Reynolds, and C. Tanford. 1976. Erythrocyte spectrin-purification in deoxycholate and preliminary characterization. Biochemistry 15: 1897 – 1904.

    Article  PubMed  CAS  Google Scholar 

  10. Sheetz, M. P., R. G. Painter, and S. J. Singer. 1976. Relationship of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry 15: 4486 – 4492.

    Article  PubMed  CAS  Google Scholar 

  11. Guthrow, C. E., J. E. Allen, and H. Rasmussen. 1972. Phosphorylation of an endogenous membrane protein by an endogeneous, membrane-associated cyclic adenosine 3′,5′-monophosphate-dependent protein kinase in human erythrocyte ghosts. J. Biol. Chem. 247:8145– 8153.

    Google Scholar 

  12. Hartwig, J. H., and T. P. Stossel. 1975. Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages. Biol. Chem. 250: 5696 – 5705.

    CAS  Google Scholar 

  13. Shiguta, Y., H. Shiguta, M. Gallo, P. Davies, I. Pastan, and M. S. Lewis. 1976. Purification and properties of filamin, an actin binding protein from chicken gizzard. J. Biol. Chem. 251: 6562 – 6567.

    Google Scholar 

  14. Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67: 835 – 851.

    Article  PubMed  CAS  Google Scholar 

  15. Enock, H. G., A. Catala, and P. Strittmatter. 1976. Mechanism of rat liver microsomal stearyl-CoA desaturase. J. Biol. Chem. 251: 5095 – 5103.

    Google Scholar 

  16. Dahl, J. L., and L. E. Hokin. 1974. The sodium potassium adenosine triphosphatase. Annu. Rev. Biochem. 43: 327 – 356.

    Article  PubMed  CAS  Google Scholar 

  17. McLennan, D. H., and P. C. Holland. 1975. Calcium transport in sarcoplasmic reticulum. Annu. Rev. Biophys. Bioeng. 4: 377 – 404.

    Article  Google Scholar 

  18. Ho, M. K., and G. Guidotti. 1975. A membrane protein from human erythrocytes involved in anion exchange. J. Biol. Chem. 250: 675 – 683.

    PubMed  CAS  Google Scholar 

  19. Drickamer, L. K. 1976. Fragmentation of the 95,000- dalton transmembrane polypeptide in human erythrocyte membranes. J. Biol. Chem. 251: 5115 – 5123.

    PubMed  CAS  Google Scholar 

  20. Cone, R. A. 1975. Transductive coupling in the visual system. In: Functional Linkage in Biomolecular Systems. F. O. Schmitt, D. M. Schneider, and D. M. Crothers, eds. Rowen Press, New York. pp. 234 – 246.

    Google Scholar 

  21. Karlin, A. 1975. The acetylcholine receptor: Progress report. Life Sci. 14: 1385 – 1415.

    Article  Google Scholar 

  22. Guidotti, G. 1976. The structure of membrane transport systems. Trends Biochem. Sci. 1: 11 – 13.

    Article  CAS  Google Scholar 

  23. Henderson, R., and P. N. T. Unwin. 1975. Three- dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28 – 32.

    Article  PubMed  CAS  Google Scholar 

  24. Kyte, J. 1975. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. J. Biol. Chem. 250: 7443 – 7449.

    PubMed  CAS  Google Scholar 

  25. Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59:351– 357.

    Google Scholar 

  26. Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12: 88 – 118.

    Article  PubMed  CAS  Google Scholar 

  27. Palade, G. E. 1975. Intracellular aspects of the process of protein synthesis. Science 189: 347 – 358.

    Article  PubMed  CAS  Google Scholar 

  28. Bretscher, M. S. 1973. Membrane structure: Some general principles. Science 181: 622 – 629.

    Article  PubMed  CAS  Google Scholar 

  29. Kresheck, G. C., and I. M. Klotz. 1969. The thermodynamics of transfer of amides from an apolar to an aqueous solution. Biochemistry 8: 8 – 12.

    Article  CAS  Google Scholar 

  30. Steck, T. L., B. Ramos, and E. Strapozon. 1976. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15: 1154 – 1161.

    Article  CAS  Google Scholar 

  31. Jenkins, R. E., and M. J. A. Tanner. 1975. The major human erythrocyte membrane protein. Biochem. J. 147: 393 – 399.

    PubMed  CAS  Google Scholar 

  32. Jenkins, R. E., and M. J. A. Tanner. 1976. The structure of the major protein of the human erythrocyte membrane. Biochem. J. 161: 134 – 147.

    Google Scholar 

  33. Schneider, A. S., M. J. T. Schneider, and K. Rosenheck. 1970. Optical activity of biological membranes: Scattering effects and protein conformation. Proc. Natl. Acad. Sci. U.S.A. 66: 793 – 798.

    Article  PubMed  CAS  Google Scholar 

  34. McLachlan, A. D., and M. Stewart. 1975. Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure. J. Mol. Biol. 98: 293 – 304.

    Article  PubMed  CAS  Google Scholar 

  35. Clothia, C. 1976. The nature of accessible and buried surfaces in proteins. J. Mol. Biol. 105: 1 – 14.

    Article  Google Scholar 

  36. Murphy, A. J. 1976. Crosslinking of the sarcoplasmic reticulum ATPase protein. Biochem. Biophys. Res. Commu. 70: 160 – 166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Guidotti, G. (1978). Membrane Proteins: Structure and Arrangement in the Membrane. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics