Advertisement

Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction

  • Hans Christoph Lüttgau
  • George Dimitrie Moisescu

Abstract

The dramatic event by which skeletal muscle, when stimulated, converts chemical energy into mechanical work has fascinated and puzzled physiologists for a long time.(1) The interest with which the process of muscular activation has been studied was probably also aroused by the possibility of measuring accurately both the electrical activity associated with the outer membranous system and the mechanical output. The whole sequence of events which bridges these two processes has been intuitively called excitation-contraction coupling.(2) Most of the current knowledge concerning this coupling is based on experiments performed in recent years, particularly on single frog and crustacean muscle fibers, a point to be borne in mind in any discussion on this subject.

Keywords

Skeletal Muscle Charge Movement Single Muscle Fibre Frog Skeletal Muscle Terminal Cisterna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, A. V. 1965. Trails and Trials in Physiology. Arnold, London, p. 374.Google Scholar
  2. 2.
    Sandow, A. 1952. Excitation-contraction coupling in muscular response. Yale J. Biol. Med. 25: 176–201.PubMedGoogle Scholar
  3. 3.
    Huxley, A. F. 1971. The activation of striated muscle and its mechanical response. Proc. R. Soc. Lond. B 178: 1–27.PubMedGoogle Scholar
  4. 4.
    Costantin, L. L. 1971. Inward spread of activation in frog skeletal muscle. In: Contractility of Muscle Cells and Related Processes. R. J. Podolsky, ed. Prentice- Hall, Englewood Cliffs, New Jersey, pp. 89–98.Google Scholar
  5. 5.
    Page, S. G. 1965. A comparison of the fine structures of frog slow and twitch muscle fibers. J. Cell Biol. 26: 477–497.PubMedGoogle Scholar
  6. 6.
    Peachey, L. D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25: 209–231.PubMedGoogle Scholar
  7. 7.
    Peachey, L. D., and R. F. Schild. 1968. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. J. Physiol. 194: 249–258.PubMedGoogle Scholar
  8. 8.
    Franzini-Armstrong, C. 1973. Membranous systems in muscle fibres. In: The Structure and Function of Muscle, 2nd ed., Vol. II, Pt. 2. G. H. Bourne, ed. Academic Press, New York. pp. 531–619.Google Scholar
  9. 9.
    Page, S. G. 1964. The organization of the sarcoplasmic reticulum in frog muscle. J. Physiol. 175: 10–11 P.Google Scholar
  10. 10.
    Huxley, H. E. 1964. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202: 1067–1071.PubMedGoogle Scholar
  11. 11.
    Franzini-Armstrong, C., L. Landmesser, and G. Pilar. 1975. Size and shape of transverse tubule openings in frog twitch muscle fibers. J. Cell Biol. 64: 493–497.PubMedGoogle Scholar
  12. 12.
    Dulhunty, A. F., and C. Franzini-Armstrong. 1975. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250: 513–539.PubMedGoogle Scholar
  13. 13.
    Zampighi, G., J. Vergara, and F. Ramon. 1975. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? J. Cell Biol. 64: 734–740.PubMedGoogle Scholar
  14. 14.
    Mobley, B. A., and B. R. Eisenberg. 1975. Quantitative morphological analysis of frog skeletal muscle using methods of stereology. Biophys. J. 15: 254a.Google Scholar
  15. 15.
    Hodgkin, A. L., and S. Nakajima. 1972. Analysis of the membrane capacity in frog muscle. J. Physiol. 221: 121–136.PubMedGoogle Scholar
  16. 16.
    Franzini-Armstrong, C. 1970. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47: 488–499.PubMedGoogle Scholar
  17. 17.
    Franzini-Armstrong, C. 1975. Membrane particles and transmission at the triad. Fed. Proc. 34: 1382–1389.PubMedGoogle Scholar
  18. 18.
    Zachar, J. 1971. Electrogenesis and Contractility in Skeletal Muscle Cells. Univ. Park Press, Baltimore, p. 638.Google Scholar
  19. 19.
    Baker, P. F., and H. Reuter. 1975. Calcium Movement in Excitable Cells. Pergamon, Oxford, p. 102.Google Scholar
  20. 20.
    Adrian, R. H. 1960. Potassium chloride movement and the membrane potential of frog muscle. J. Physiol. 151: 154–185.PubMedGoogle Scholar
  21. 21.
    Adrian, R. H. 1961. Internal chloride concentration and chloride efflux of frog muscle. J. Physiol. 156: 623–632.PubMedGoogle Scholar
  22. 22.
    Hodgkin, A. L., and P. Horowicz. 1959. Movements of Na and K in single muscle fibres. J. Physiol. 145: 405–432.PubMedGoogle Scholar
  23. 23.
    Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148: 127–160.PubMedGoogle Scholar
  24. 24.
    Eisenberg, R. S., and P. W. Gage. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J. Gen. Physiol. 53: 279–297.PubMedGoogle Scholar
  25. 25.
    Nastuk, W. L., and A. L. Hodgkin. 1950. The electrical activity of single muscle fibers. J. Cell Comp. Physiol. 35: 39–74.Google Scholar
  26. 26.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol. 208: 607–644.PubMedGoogle Scholar
  27. 27.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Slow changes in potassium permeability in skeletal muscle. J. Physiol. 208: 645–668.PubMedGoogle Scholar
  28. 27a.
    Stanfield, P. R. 1975. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J. Physiol. 251: 711–735.PubMedGoogle Scholar
  29. 28.
    Ildefonse, M., and O. Rougier. 1972. Voltage clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J. Physiol. 222: 373–395.PubMedGoogle Scholar
  30. 29.
    Ildefonse, M., and G. Roy. 1972. Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin-Huxley theory. J. Physiol. 227: 419–431.PubMedGoogle Scholar
  31. 30.
    Hodgkin, A. L., and P. Horowicz. 1957. The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J. Physiol. 136: 17 P.Google Scholar
  32. 31.
    Freygang, W. H., Jr., D. A. Goldstein, and D. C. Hellam. 1964. The after-potential that follows trains of impulses in frog muscle fibers. J. Gen. Physiol. 47: 929–952.PubMedGoogle Scholar
  33. 32.
    Lüttgau, H. C. 1965. The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. J. Physiol. 178: 45–67.Google Scholar
  34. 33.
    Huxley, A. F., and R. E. Taylor. 1955. Function of Krause’s membrane. Nature 176: 1068.PubMedGoogle Scholar
  35. 34.
    Costantin, L. L. 1970. The role of sodium current in the radial spread of contraction in frog muscle fibers. J. Gen. Physiol 55: 703–715.PubMedGoogle Scholar
  36. 35.
    Huxley, A. F. 1974. Review lecture: Muscular con-traction. J. Physiol 243: 1–43.PubMedGoogle Scholar
  37. 36.
    Lüttgau, H. C., and H. G. Glitsch. 1976. Membrane physiology of nerve and muscle fibres. Fortschr. Zool 24: 1–132.PubMedGoogle Scholar
  38. 37.
    Huxley, A. F., and R. E. Taylor. 1958. Local activation of striated muscle fibres. J. Physiol 144: 426–441.PubMedGoogle Scholar
  39. 38.
    Adrian, R. H., L. L. Costantin, and L. D. Peachey. 1969. Radial spread of contraction in frog muscle fibres. J. Physiol 204: 231–257.PubMedGoogle Scholar
  40. 39.
    Jaimovich, E., R. A. Venosa, P. Shrager, and P. Horowicz. 1975. Tetrodotoxin (TTX) binding in normal and “detubulated” frog sartorius muscle. Biophys. J. 15: 255a.Google Scholar
  41. 40.
    Hodgkin, A. L., and P. Horowicz. 1960. Potassium contractures in single muscle fibres. J. Physiol 153: 386–403.PubMedGoogle Scholar
  42. 41.
    Lüttgau, H. C., and H. Oetüker. 1968. The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol 194: 51–74.PubMedGoogle Scholar
  43. 42.
    Ford, L. E., and R. J. Podolsky. 1970. Regenerative calcium release within muscle cells. Science 167: 58–59.PubMedGoogle Scholar
  44. 43.
    Endo, M., M. Tanaka, and Y. Ogawa. 1970. Calcium- induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34–36.PubMedGoogle Scholar
  45. 44.
    Ford, L. E., and R. J. Podolsky. 1972. Intracellular calcium movements in skinned muscle fibres. J. Physiol 223: 21–33.PubMedGoogle Scholar
  46. 45.
    Armstrong, C. M., F. M. Bezanilla, and P. Horowicz. 1972. Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-N, N′-tetraacetic acid. Biochim. Biophys. Acta 267: 605–608.PubMedGoogle Scholar
  47. 46.
    Stefani, E., and D. J. Chiarandini. 1973. Skeletal muscle: Dependence of potassium contractures on extracellular calcium. Pflügers Arch. 343: 143–150.PubMedGoogle Scholar
  48. 47.
    Costantin, L. L., and S. R. Taylor. 1973. Graded activation in frog muscle fibers. J. Gen. Physiol 61: 424–443.PubMedGoogle Scholar
  49. 48.
    Endo, M. 1975. Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc. Jap. Acad. 51: 467–472.Google Scholar
  50. 49.
    Endo, M. 1975. Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle. Proc. Jap. Acad. 51: 479–484.Google Scholar
  51. 50.
    Endo, M., and S. Thorens. 1975. Mechanism of release of calcium from the sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ. Amsterdam, pp. 359–366.Google Scholar
  52. 51.
    Thorens, S., and M. Endo. 1975. Calcium-induced calcium release and “depolarization”-induced calcium release: Their physiological significance. Proc. Jap. Acad. 51: 473–478.Google Scholar
  53. 51a.
    Endo, M. 1977. Calcium release from sarcoplasmic reticulum. Physiol Rev. 57: 71–108.PubMedGoogle Scholar
  54. 51b.
    Lüttgau, H. Ch. 1977. New trends in membrane physiology of nerve and muscle fibres. J. Comp. Physiol A120: 51–70.Google Scholar
  55. 51c.
    Fabiato, A., and F. Fabiato, 1977. Calcium release from the sarcoplasmic reticulum. Circ. Research. 40: 119–129.Google Scholar
  56. 52.
    Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature 242: 244–246.PubMedGoogle Scholar
  57. 53.
    Aimers, W. 1975. Observations on intramembrane charge movements in skeletal muscle. Philos. Trans. R. Soc. B 270: 507–513.Google Scholar
  58. 54.
    Adrian, R. H., and W. Aimers. 1976. Charge movement in the membrane of striated muscle. J. Physiol 254: 339–360.PubMedGoogle Scholar
  59. 55.
    Adrian, R. H., W. K. Chandler, and R. F. Rakowski. 1976. Charge movement and mechanical repriming in skeletal muscle. J. Physiol 254: 361–388.PubMedGoogle Scholar
  60. 56.
    Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. 254: 245–283.PubMedGoogle Scholar
  61. 57.
    Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol 254: 285–316.PubMedGoogle Scholar
  62. 58.
    Hodgkin, A. L., and A. F. Huxley. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol 116: 497–506.PubMedGoogle Scholar
  63. 59.
    Chandler, W. K., M. F. Schneider, R. F. Rakowski, and R. H. Adrian. 1975. Charge movements in skeletal muscle. Philos. Trans. R. Soc. B 270: 501–505.Google Scholar
  64. 60.
    Aimers, W., R. H. Adrian, and S. R. Levinson. 1976. Some dielectric properties of muscle membrane and their possible importance for excitation-contraction coupling. Ann. N.Y. Acad. Sci. 264: 278–292.Google Scholar
  65. 61.
    Bezanilla, F., and P. Horowicz. 1975. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A. J. Physiol 246: 709–735.PubMedGoogle Scholar
  66. 62.
    Baylor, S. M., and H. Oetüker. 1975. Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Nature 253: 97–101.PubMedGoogle Scholar
  67. 63.
    Oetüker, H., S. M. Baylor, and W. K. Chandler. 1975. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Nature 257: 693–696.Google Scholar
  68. 63a.
    Baylor S. M., and H. Oetüker. 1977. Birefringence signals from surface T-system membranes of frog single muscle fibres. J. Physiol 264: 199–213.PubMedGoogle Scholar
  69. 64.
    Cohen, L. B., B. Hille, R. D. Keynes, D. Landowne, and E. Rojas. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol 218: 205–237.PubMedGoogle Scholar
  70. 65.
    Cohen, L. B., B. M. Salzberg, H. V. Davila, W. N. Ross, D. Landowne, A. S. Waggoner, and C. H. Wang. 1974. Changes in axon fluorescence during activity: Molecular probes of membrane potential. J. Membr. Biol 19: 1–36.PubMedGoogle Scholar
  71. 66.
    Ebashi, S., M. Endo, and I. Ohtsuki. 1969. Control of muscle contraction. Q. Rev. Biophys. 2: 351–384.PubMedGoogle Scholar
  72. 67.
    Weber, A., and J. M. Murray. 1973. Molecular control mechanisms in muscle contraction. Physiol Rev. 53: 612–673.PubMedGoogle Scholar
  73. 68.
    Lehman, W., and A. G. Szent-Gyorgyi. 1975. Regulation of muscular contraction. J. Gen. Physiol. 65: 1–30.Google Scholar
  74. 68a.
    Morgan, M., S. V. Perry, and J. Ottaway. 1976. Myosin light-chain phosphatase. Biochem. J. 157: 687–697.PubMedGoogle Scholar
  75. 68b.
    Moisescu, D. G. 1976. Kinetics of reaction in Ca- activated skinned muscle fibres. Nature 262: 610–613.PubMedGoogle Scholar
  76. 69.
    Potter, J. D., and J. Gergely. 1974. Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703.PubMedGoogle Scholar
  77. 70.
    Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164: 1356–1366.PubMedGoogle Scholar
  78. 71.
    Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30: 383–434.PubMedGoogle Scholar
  79. 71a.
    Squire, J. M. 1974. Symmetry and three-dimensional arrangement of filaments in vertebrate skeletal muscle. J. Mol. Biol. 90: 153–160.PubMedGoogle Scholar
  80. 72.
    Gordon, A. M., A. F. Huxley, and F. J. Julian. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184: 170–192.PubMedGoogle Scholar
  81. 73.
    Elliott, G. F., J. Lowy, and C. R. Worthington. 1963. An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and rigor. J. Mol. Biol. 6: 295–305.Google Scholar
  82. 74.
    Hanson, J., and J. Lowy. 1963. The structure of F- actin and of actin filaments isolated from muscle. J. Mol. Biol. 6: 46–60.Google Scholar
  83. 75.
    Haselgrove, J. C. 1972. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37: 341–359.Google Scholar
  84. 76.
    Jobsis, F. F., and M. J. O’Connor. 1966. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25: 246–252.PubMedGoogle Scholar
  85. 77.
    Ashley, C. C., and E. B. Ridgway. 1970. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. 209: 105–130.PubMedGoogle Scholar
  86. 78.
    Taylor, S. R., R. Rüdel, and J. R. Blinks. 1975. Calcium transients in amphibian muscle. Fed. Proc. 34: 1379–1381.PubMedGoogle Scholar
  87. 79.
    Ashley, C. C., P. C. Caldwell, A. K. Campbell, T. J. Lea, and D. G. Moisescu. 1976. Calcium movements in muscle. Symp. Soc. Exp. Biol. 30: 397–422.Google Scholar
  88. 80.
    Natori, R. 1954. The property and contraction process of isolated myofibrils. Jikeikai Med. J. 1: 119–126.Google Scholar
  89. 81.
    Hellam, D. C., and R. J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. 200: 807–819.PubMedGoogle Scholar
  90. 82.
    Ashley, C. C., and D. G. Moisescu. 1974. The influence of [Mg2+] and pH upon the isometric steady state tension-Ca2+ relationship in isolated bundles of myofibrils. J. Physiol. 239: 112–114 P.Google Scholar
  91. 82a.
    Ashley, C. C., and D. G. Moisescu. 1977. The effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of myofibrils isolated from single crustacean muscle fibres. J. Physiol. 270: 627–652.PubMedGoogle Scholar
  92. 83.
    Moisescu, D. G. 1975. The effect of [K+] on the calcium-induced development of tension in isolated bundles of myofibrils. Pflugers Arch. 355: R62.Google Scholar
  93. 84.
    Weber, A., R. Herz, and I. Reiss. 1964. The regulation of myofibrillar activity by calcium. Proc. R. Soc. Lond. B 160: 489–501.PubMedGoogle Scholar
  94. 85.
    Potter, J. D., and J. Gergely. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar ATPase. J. Biol. Chem. 250: 4628–4633.PubMedGoogle Scholar
  95. 86.
    Ashley, C. C., and D. G. Moisescu. 1972. Model for the action of calcium in muscle. Nature (London) New Biol. 237: 208–211.Google Scholar
  96. 87.
    Pechère, J. F., J. Démaillé, J. P. Capony, E. Dutruge, G. Baron, and C. Pina. 1975. Muscular paralbumins: Some explorations into their possible biological significance. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam. pp. 459–468.Google Scholar
  97. 88.
    Carafoli, E., K. Malmstrôm, H. Capano, E. Sigel, and M. Crompton. 1975. Mitochondria and the regulation of cell calcium. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Qementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 53–64.Google Scholar
  98. 89.
    Scarpa, A. 1975. Kinetics and energy-coupling of Ca2+ transport in mitochondria. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 65–76.Google Scholar
  99. 90.
    Gillis, J. M. 1972. Le rôle du calcium dans le contrôle intracellulaire de la contraction musculaire. Thèse d’ Agrégation, Université Catholique de Louvain, Vander, Louvain.Google Scholar
  100. 91.
    Portzehl, H., P. C. Caldwell, and J. C. Ruegg. 1964. The dependence of contraction and relaxation of muscle fibres from the crab M ai a squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79: 581–591.PubMedGoogle Scholar
  101. 92.
    Hagiwara, S., and S. Nakajima. 1966. Effects of the intracellular [Ca2+] upon the excitability of the muscle fiber membrane of a barnacle. J. Gen. Physiol. 49: 807–817.PubMedGoogle Scholar
  102. 93.
    Keynes, R. D., E. Rojas, R. E. Taylor, and J. Vergara. 1973. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. 229: 409–455.PubMedGoogle Scholar
  103. 94.
    Cosmos, E., and E. J. Harris. 1961. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J. Gen. Physiol. 44: 1121–1130.PubMedGoogle Scholar
  104. 95.
    DiPolo, R. 1973. Sodium-dependent calcium influx in dialysed barnacle muscle fibres. Biochim. Biophys. Acta 298: 279–283.PubMedGoogle Scholar
  105. 96.
    Ashley, C. C., J. C. Ellory, and K. Hainaut. 1974. Calcium movements in single crustacean muscle fibres. J. Physiol. 242: 255–272.PubMedGoogle Scholar
  106. 97.
    Bianchi, C. P., and A. M. Shanes. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42: 803–815.PubMedGoogle Scholar
  107. 98.
    Curtis, B. A. 1966. Ca fluxes in single twitch muscle fibers. J. Gen. Physiol. 50: 255–267.PubMedGoogle Scholar
  108. 99.
    Ashley, C. C., P. J. Griffiths, D. G. Moisescu, and R. M. Rose. 1975. The use of aequorin and the isolated myofibrillar bundle preparation to investigate the effect of SR calcium releasing agents. J. Physiol 245: 12–14 P.Google Scholar
  109. 100.
    Hill, A. V. 1949. The abrupt transition from rest to activity in muscle. Proc. R. Soc. Lond. B 136: 399–420.PubMedGoogle Scholar
  110. 101.
    Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol. 51: 65–83.PubMedGoogle Scholar
  111. 102.
    Curtis, B. 1970. Calcium efflux from frog twitch muscle fibers. J. Gen. Physiol. 55: 243–253.Google Scholar
  112. 103.
    Ford, L. E., and R. J. Podolsky. 1972. Calcium up-take and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. 233: 1–19.Google Scholar
  113. 104.
    Ashley, C. C., P. C. Caldwell, and A. G. Lowe. 1972. The efflux of calcium from single crab and barnacle muscle fibres. J. Physiol. 223: 735–755.PubMedGoogle Scholar
  114. 105.
    Carvalho, A. P. 1968. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caf-feine, quinine and local anesthetics. J. Gen. Physiol. 52: 622–642.Google Scholar
  115. 106.
    MacLennan, D. H., and P. G. Wong. 1971. Isolation of a calcium-sequestring protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 68: 1231–1235.PubMedGoogle Scholar
  116. 107.
    Ebashi, S., and F. Lipmann. 1962. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14: 389–400.PubMedGoogle Scholar
  117. 108.
    Hasselbach, W. 1964. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 14: 167–222.Google Scholar
  118. 109.
    Weber, A., R. Herz, and I. Reiss. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem. Z. 345: 329–369.Google Scholar
  119. 110.
    Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. In: Current Topics in Membranes and Transport, Vol. 3. F. Bronner and A. Kleinzeller, eds. Academic Press, New York, pp. 83–197.Google Scholar
  120. 111.
    Hasselbach, W., and M. Makinose. 1963. Über den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Retikulums. Biochem. Z. 339: 94–111.PubMedGoogle Scholar
  121. 112.
    Martonosi, A. N. 1975. The mechanism of Ca transport in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 313–327.Google Scholar
  122. 113.
    Makinose, M., and W. Hasselbach. 1971. ATP synthesis by the reversal of the sarcoplasmic calcium pump. Fed. Eur. Biol. Soc. Lett. 12: 271–272.Google Scholar
  123. 114.
    Carvalho, A. P., M. G. P. Vale, and V. R. O. e Castro. 1975. Utilization of X-537A to differentiate between intravesicular and membrane bound Ca2+ in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 349–358.Google Scholar
  124. 115.
    Ogawa, Y. 1970. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J. Biochem. Tokyo 67: 667–683.PubMedGoogle Scholar
  125. 116.
    Ashley, C. C., and D. G. Moisescu. 1973. The mechanism of the free calcium change in single muscle fibres during contraction. J. Physiol. 231: 23–25 P.Google Scholar
  126. 117.
    Moisescu, D. G. 1973. The intracellular control and action of calcium in striated muscle and the forces responsible for the stability of the myofilament lattice. Ph.D. thesis, University of Bristol.Google Scholar
  127. 118.
    Ashley, C. C., D. G. Moisescu, and R. M. Rose. 1974. Kinetics of calcium during contraction: Myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In: Calcium Binding Proteins. W. Drabikowski, H. Strzelecka-Golaszewska, and E. Carafoli, eds. North-Holland Publ., Amsterdam, pp. 609–642.Google Scholar
  128. 119.
    Winegrad, S. 1965. Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol. 48: 455–479.PubMedGoogle Scholar
  129. 120.
    Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science 147: 158–160.PubMedGoogle Scholar
  130. 121.
    Pease, D. C., D. J. Jenden, and J. N. Howell. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibres. II. Electron microscopic localization of uptake sites. J. Cell. Comp. Physiol. 65: 141–154.Google Scholar
  131. 122.
    Shimomura, O., F. H. Johnson, and Y. Saiga. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J. Cell. Comp. Physiol. 59: 223–239.PubMedGoogle Scholar
  132. 123.
    Shimomura, O., F. H. Johnson, and Y. Saiga. 1963. Microdetermination of calcium by aequorin luminescence. Science 140: 1339–1340.PubMedGoogle Scholar
  133. 123a.
    Blinks, J. R, F. G. Prendergast, and D. G. Allen. 1976. Photoproteins as biological calcium indicators. Pharmacol. Rev. 28: 1–93.PubMedGoogle Scholar
  134. 124.
    Izutsu, K. T., S. P. Felton, I. A. Siegel, W. T. Yode, and A. C. N. Chen. 1972. Aequorin: Its ionic specificity. Biochem. Biophys. Res. Commun. 49: 1034–1039.PubMedGoogle Scholar
  135. 125.
    Ashley, C. C. 1970. An estimate of calcium concentra¬tion changes during the contraction of single muscle fibres. J. Physiol. 210: 133–134 P.Google Scholar
  136. 126.
    Moisescu, D. G., C. C. Ashley, and A. K. Campbell. 1975. Comparative aspects of the calcium-sensitive photoproteins aequorin and obelin. Biochim. Biophys. Acta 396: 133–140.PubMedGoogle Scholar
  137. 127.
    Ashley, C. C., and D. G. Moisescu. 1975. The part played by Ca2+ in the contraction of isolated bundles of myofibrils. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 517–525.Google Scholar
  138. 128.
    Hastings, J. W., G. Mitchell, P. H. Mattingly, J. R. Blinks, and M. van Leeuwen. 1969. Response of aequorin bioluminescence to rapid changes in calcium concentration. Nature 222: 1047–1050.PubMedGoogle Scholar
  139. 129.
    van Leeuwen, M., and J. R. Blinks. 1969. Properties of aequorin relevant to its use as a calcium indicator in biological work. Fed. Proc. 28: Abstr. No. 571.Google Scholar
  140. 130.
    Huxley, A. F., and R. H. Simmons. 1972. Mechanical transients and the origin of muscle force. Cold Spring Harbor Symp. Quant. Biol. 37: 669–680.Google Scholar
  141. 131.
    Ashley, C. C., and P. C. Caldwell. 1974. Calcium movements in relation to contraction. Biochem. Soc. Symp. 39: 29–50.PubMedGoogle Scholar
  142. 132.
    Inesi. G.. and A. Scarpa. 1972. Fast kinetics of adenosine triphosphate dependent Ca2+ uptake by fragmented sarcoplasmic reticulum. Biochemistry 11: 356–359.PubMedGoogle Scholar
  143. 133.
    Suko, J., F. Winkler, B. Scharinger, and G. Hellmann. 1975. Effects of local anesthetics on ATP-ADP phosphate exchange and phosphoprotein formation by sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 299–311.Google Scholar
  144. 134.
    Townsend, L. 1967. Ph.D. dissertation quoted in Ref. 137.Google Scholar
  145. 135.
    Scales, B., and D. A. D. Mcintosh. 1968. Effects of propranolol and its optical isomers on the radiocalcium uptake and the ATPases of skeletal and cardiac sarcoplasmic reticulum. J. Pharmacol. Exp. Ther. 160: 261–267.PubMedGoogle Scholar
  146. 136.
    Temple, D. M., W. Hasselbach, and M. Makinose. 1974. The inhibition by β-adrenoreceptor blocking agents of calcium uptake into and efflux from isolated sarcoplasmic vesicles. Naunyn-Schmie deb ergs Arch. Pharmacol. 282: 187–194.Google Scholar
  147. 137.
    Feinstein, M. B., and M. Paimre. 1969. Pharmacological action of local anesthetics on E-C coupling in striated and smooth muscle. Fed. Proc. 28: 1643–1648.PubMedGoogle Scholar
  148. 138.
    Baizer, H., M. Makinose, and W. Hasselbach. 1968. The inhibition of the sarcoplasmic calcium pump by prenylamine, reserpine, chlorpromasine and imipramine. Naunyn-Schmiedebergs Arch. Pharmacol. 260: 444–455.Google Scholar
  149. 139.
    Bianchi, C. P., and T. C. Bolton, 1967. Action of local anesthetics on coupling systems in muscle. J. Pharmacol. Exp. Ther. 157: 388–405.PubMedGoogle Scholar
  150. 140.
    Thesleff, S. 1956. The effect of anesthetic agents on skeletal muscle membrane. Acta Physiol. Scand. 37: 335–349.PubMedGoogle Scholar
  151. 141.
    Caputo, C., and R. DiPolo. 1975. Calcium and contractile activation in barnacle muscle fibres. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 527–534.Google Scholar
  152. 142.
    Quastel, D. M. J., and J. T. Hackett. 1973. Effects of drugs on smooth and striated muscle. In: The Structure and Function of Muscle, 2nd ed., Vol. IV. G. H. Bourne, ed. Academic Press, New York. pp. 1–153.Google Scholar
  153. 143.
    Almers, W., and P. M. Best. 1976. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J. Physiol. 262: 583–612.PubMedGoogle Scholar
  154. 144.
    Hainaut, K., and J. E. Desmedt. 1974. Effect of dantrolene sodium on calcium movements in single muscle fibres. Nature 252: 728–730.PubMedGoogle Scholar
  155. 145.
    Weber, A., and R. Herz. 1968. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 52: 750–759.PubMedGoogle Scholar
  156. 146.
    Axelsson, J., and S. Thesleff. 1968. Activation of the contractile mechanism in striated muscle. Acta Physiol. Scand. 44: 55–66.Google Scholar
  157. 147.
    Lüttgau, H. C. 1970. Caffeine, calcium and the activation of contraction. In: A Symposium on Calcium and Cellular Function. A. W. Cuthbert, ed. Macmillan, New York. pp. 241–248.Google Scholar
  158. 148.
    Feinstein, M. 1963. Inhibition of caffeine rigor and radiocalcium movements by local anesthetics in frog sartorius muscle. J. Gen. Physiol 47: 151–172.PubMedGoogle Scholar
  159. 149.
    1-9. Thorpe, W. R., and P. Seeman. 1971. The site of action of caffeine and procaine in skeletal muscle. J. Pharmacol. Exp. Ther. 179: 324–330.PubMedGoogle Scholar
  160. 150.
    Strobel, G. E., and C. P. Bianchi. 1971. An in vitro model of anesthetic hypertonic hyperpyrexia, halothane-caffeine-induced muscle contractions: Preven-tion of contracture by procainamide. Anesthesiology 35: 465–473.PubMedGoogle Scholar
  161. 151.
    Jenden, D. J., and A. S. Fairhurst. 1969. The pharmacology of ryanodine. Pharmacol. Rev. 21: 1–26.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Hans Christoph Lüttgau
    • 1
  • George Dimitrie Moisescu
    • 1
  1. 1.Department of Cell PhysiologyRuhr UniversityBochumWest Germany

Personalised recommendations