Advertisement

Regulation of Cellular Volume

  • Anthony D. C. Macknight
  • Alexander Leaf

Abstract

With some 55 to 60% of body weight attributable to water and approximately two-thirds of this within cells, the constancy of body weight is testimonial to the precision with which cells regulate their water content. Understanding of how this is accomplished is still, however, largely speculative.

Keywords

Cardiac Glycoside Sodium Transport Ethacrynic Acid Sodium Pump Colloid Osmotic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peters, J. P. 1944. Water exchange. Physiol. Rev. 24: 491 – 531.Google Scholar
  2. 2.
    Sabbatini, L. 1901. Determination du point de congélation des organes animaux. J. Physiol. (Pathol. Gen.) 3: 939 – 950.Google Scholar
  3. 3.
    Gomôri, P., and S. Molnâr. 1932. Die stôrung der osmoregulation der gewebe bei der Wasservergiftung. Arch. Exp. Pathol. Pharmakol. 167: 459 – 468.CrossRefGoogle Scholar
  4. 4.
    Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs. 1949. Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44: 410 – 418.Google Scholar
  5. 5.
    Aebi, H. 1953. Elektrolyt-Akkumulierung und Osmoregulation in Gewebsschmitten. Helv. Physiol. Pharmacol. Acta 11: 96 – 121.PubMedGoogle Scholar
  6. 6.
    Robinson, J. R. 1949. Some effects of glucose and calcium upon the metabolism of kidney slices from adult and newborn rats. Biochem. J. 45: 68 – 74.Google Scholar
  7. 7.
    Robinson, J. R. 1950. Osmoregulation in surviving slices from the kidneys of adult rats. Proc. R. Soc. Lond. (Biol.) 137: 378 – 402.CrossRefGoogle Scholar
  8. 8.
    Robinson, J. R. 1953. The active transport of water in living systems. Biol. Rev. 28: 158 – 194.CrossRefGoogle Scholar
  9. 9.
    Robinson, J. R. 1954. Secretion and transport of water. Symp. Soc. Exp. Biol. 8: 42 – 62.Google Scholar
  10. 10.
    Deyrup, I. J. 1953. Reversal of fluid uptake by rat kidney slices immersed in isosmotic solutions in vitro. Am. J. Physiol. 175: 349 – 352.PubMedGoogle Scholar
  11. 11.
    Opie, E. L. 1949. Movements of water in tissues removed from the body and its relation to movements of water during life. J. Exp. Med. 89: 185 – 208.PubMedCrossRefGoogle Scholar
  12. 12.
    Mudge, G. H. 1951. Studies on potassium accumulation by rabbit kidney slices: Effect of metabolic activity. Am. J. Physiol. 165: 113 – 127.PubMedGoogle Scholar
  13. 13.
    Appleboom, J. W. T., W. A. Brodsky, W. S. Tuttle, and I. Diamond. 1958. Freezing point depression of mammalian tissues after sudden heating in boiling distilled water. J. Gen. Physiol. 41: 1153 – 1169.CrossRefGoogle Scholar
  14. 14.
    Maffly, R. H., and A. Leaf. 1959. The potential of water in mammalian tissues. J. Gen. Physiol. 42: 1257 – 1275.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson, T. H. 1954. Ionic permeability and osmotic swelling of cells. Science 120: 104 – 105.PubMedCrossRefGoogle Scholar
  16. 16.
    Leaf, A. 1956. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 62: 241 – 248.PubMedGoogle Scholar
  17. 17.
    Davson, H. 1970. A Textbook of General Physiology. Churchill, London.Google Scholar
  18. 18.
    Robinson, J. R. 1975. A Prelude to Physiology. Blackwell, Oxford.Google Scholar
  19. 19.
    Hitchcock, D. I. 1924. Proteins and the Donnan equilibrium. Physiol. Rev. 4: 505 – 531.Google Scholar
  20. 20.
    Harvey, E. N. 1954. Tension at the cell surface. Protoplasmatologia 2: E5.Google Scholar
  21. 21.
    Leaf, A. 1959. Maintenance of concentration gradients and regulation of cell volume. Ann. N. Y. Acad. Sci. 72: 396 – 404.PubMedCrossRefGoogle Scholar
  22. 22.
    Post, R. L., and P. C. Jolly. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118 – 128.PubMedCrossRefGoogle Scholar
  23. 23.
    Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169 – 194.PubMedCrossRefGoogle Scholar
  24. 24.
    Tosteson, D. C. 1964. Regulation of cell volume by sodium and potassium transport. In: The Cellular Functions of Membrane Transport. J. F. Hoffman, ed. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  25. 25.
    Stein, W. D. 1967. The Movement of Molecules across Cell Membranes. Academic Press, New York.Google Scholar
  26. 26.
    Evans, J. V. 1954. Electrolyte concentrations in red blood cells of British breeds of sheep. Nature 174: 931.PubMedCrossRefGoogle Scholar
  27. 27.
    Evans, J. V., and A. T. Phillipson. 1957. Electrolyte concentrations in the erythrocytes of the goat and ox. J. Physiol. (London) 139: 87 – 96.Google Scholar
  28. 28.
    Woodbury, J. W. 1965. The cell membrane: Ionic and potential gradients and active transport. In: Physiology and Biophysics. T. H. Rush and H. D. Patton, eds. Saunders. Philadelphia, Pennsylvania.Google Scholar
  29. 29.
    Macknight, A. D. C. 1968. Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media containing ouabain. Biochim. Biophys. Acta 150: 263 – 270.PubMedCrossRefGoogle Scholar
  30. 30.
    Heppel, L. A. 1939. The electrolytes of muscle and liver in potassium-depleted rats. Am. J. Physiol. 127: 385 – 392.Google Scholar
  31. 31.
    Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45: 596 – 617.PubMedGoogle Scholar
  32. 32.
    Kleinzeller, A., and A. Knotkova. 1964. The effect of ouabain on the electrolyte and water transport in kidney cortex and liver slices. J. Physiol. (Lond.) 175: 172 – 192.Google Scholar
  33. 33.
    Macknight, A. D. C. 1968. Water and electrolyte contents of rat renal cortical slices incubated in medium containing p-chloromercuribenzoic acid or p- chloromercuribenzoic acid and ouabain. Biochim. Biophys. Acta 163: 500 – 505.PubMedCrossRefGoogle Scholar
  34. 34.
    Maude, D. L. 1969. Effects of K and ouabain on fluid transport and cell Na in proximal tubule in vitro. Am. J. Physiol. 210: 1199 – 1206.Google Scholar
  35. 35.
    Maude, D. L. 1970. Mechanism of salt transport and some permeability properties of rat proximal tubule. Am. J. Physiol. 218: 1590 – 1595.PubMedGoogle Scholar
  36. 36.
    Munday, K. A., B. J. Parsons, and J. A. Poat. 1971. The effect of angiotensin on cation transport by rat kidney cortex slices. J. Physiol. (Lond.) 215: 269 – 282.Google Scholar
  37. 37.
    Whittembury, G. 1968. Sodium and water transport in kidney proximal tubular cells. J. Gen. Physiol. 51:303s–314s.Google Scholar
  38. 38.
    Willis, J. S. 1966. Characteristics of ion transport in kidney cortex of mammalian hibernators. J. Gen. Physiol. 49: 1221 – 1239.PubMedGoogle Scholar
  39. 39.
    Macknight, A. D. C., J. P. Pilgrim, and B. A. Robinson. 1974. The regulation of cellular volume in liver slices. J. Physiol. (Lond.) 238: 279 – 294.Google Scholar
  40. 40.
    McLaughlin, C. W. 1973. Control of sodium, potassium and water content and utilisation of oxygen in rat liver slices, studied by affecting cell membrane permeability with calcium and active transport with ouabain. Biochim. Biophys. Acta 323: 285 – 296.PubMedCrossRefGoogle Scholar
  41. 41.
    Parker, J. C. 1971. Ouabain-insensitive effects of metabolism on ion and water content of red blood cells. Am. J. Physiol. 221: 338 – 342.PubMedGoogle Scholar
  42. 42.
    Daniel, E. E., and K. Robinson. 1971. Effects of inhibitors of active transport on 22Na and 42 K movements and on nucleotide levels in rat uteri at 25°C. Can. J. Physiol. Pharmacol. 49: 178 – 204.PubMedCrossRefGoogle Scholar
  43. 43.
    Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331 – 348.Google Scholar
  44. 44.
    Chan, P. C., V. Calabrese, and L. S. Thiel. 1964. Species differences in the effect of sodium and potassium ions on the ATPase of erythrocyte membranes. Biochim. Biophys. Acta 79: 424 – 426.PubMedCrossRefGoogle Scholar
  45. 45.
    Gupta, J. D., V. J. Peterson, and J. D. Harley. 1964. Erythrocytic ouabain-sensitive and ouabain-insensitive adenosine triphosphatase in various mammalian species. Comp. Biochem. Physiol. 47A: 1123–1126.CrossRefGoogle Scholar
  46. 46.
    Bernstein, R. E. 1954. Potassium and sodium balance in mammalian red cell. Science 120: 459 – 460.PubMedCrossRefGoogle Scholar
  47. 47.
    Parker, J. C. 1973. Dog red blood cells. Adjustments of density in vivo. J. Gen Physiol. 61: 146 – 157.PubMedCrossRefGoogle Scholar
  48. 48.
    Parker, J. C. 1973. Dog red blood cells. Adjustment of salt and water content in vitro. J. Gen. Physiol. 62: 147 – 156.PubMedCrossRefGoogle Scholar
  49. 49.
    Parker, J. C., H. J. Gitelman, P. S. Gloson, and D. L. Leonard. 1975. Role of calcium in volume regulation by dog red blood cells. J. Gen. Physiol. 65: 84 – 96.PubMedCrossRefGoogle Scholar
  50. 50.
    Parker, J. C., and R. L. Snow. 1972. Influence of external ATP on permeability, metabolism and physical properties of dog red blood cells. Am. J. Physiol. 223: 888 – 893.PubMedGoogle Scholar
  51. 51.
    Steinbach, H. B. 1940. Sodium and potassium in frog muscle. J. Biol. Chem. 133: 695 – 701.Google Scholar
  52. 52.
    Proverbio, F., and G. Whittembury. 1975. Cell electrical potentials during enhanced sodium extrustion in guinea-pig kidney cortex slices. J. Physiol. (Lond.) 250: 559 – 579.Google Scholar
  53. 53.
    Allison, J. V. 1975. Effects of ouabain at different concentrations upon slices of rat renal cortex. Proc. Univ. Otago Med. Sch. 53: 38 – 40.Google Scholar
  54. 54.
    Whittembury, G., and F. Proverbio. 1970. Two modes of Na extrusion in cells from guinea-pig kidney cortex slices. Pfluegers Arch. 316: 1 – 25.CrossRefGoogle Scholar
  55. 55.
    Macknight, A. D. C., M. M. Civan, and A. Leaf. 1975. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder. J. Membr. Biol. 20: 387 – 401.PubMedCrossRefGoogle Scholar
  56. 56.
    Cooke, K. R. 1975. Effects of hydrochlorothiazide and ouabain on changes in the composition of freshly cut rabbit renal cortical slices. Proc. Univ. Otago Med. Sch. 53: 57 – 58.Google Scholar
  57. 57.
    Cooke, K. R. 1975. Effect of incubating freshly cut guinea-pig renal cortical slices in media containing ouabain. Proc. Univ. Otago Med. Sch. 53: 59 – 60.Google Scholar
  58. 58.
    Burg, M. B., E. F. Grollman, and J. Orloff. 1964. Sodium and potassium flux of separated renal tubules. Am. J. Physiol. 206: 483 – 491.PubMedGoogle Scholar
  59. 59.
    Dellasega, M., and J. J. Grantham. 1973. Regulation of renal tubule cell volume in hypotonic media. Am. J. Physiol. 224: 1288 – 1294.PubMedGoogle Scholar
  60. 60.
    Podevin, R. A., and E. F. Boumendil-Podevin. 1972. Effects of temperature medium K+, ouabain and ethacrynic acid on transport of electrolyte and water by separated renal tubules. Biochim. Biophys. Acta 282: 234 – 249.PubMedCrossRefGoogle Scholar
  61. 61.
    Adrian, R. H. 1956. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133: 631 – 658.Google Scholar
  62. 62.
    Boyle, P. J., and E. J. Conway. 1941. Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.) 100: 1 – 63.Google Scholar
  63. 63.
    Burg, M. B., and J. Orloff. 1966. Effects of temperature and medium K on Na and K fluxes in separated renal tubules. Am. J. Physiol. 211: 1005 – 1010.PubMedGoogle Scholar
  64. 64.
    Conway, E. J., O. Fitzgerald, and T. C. Macdougald. 1946. Potassium accumulation in the proximal convoluted tubules of the frog’s kidney. J. Gen. Physiol. 29: 305 – 334.CrossRefGoogle Scholar
  65. 65.
    Cooke, K. R. 1975. Water and ion contents of rat renal cortical slices incubated in isosmotic media with different potassium concentrations. Proc. Univ. Otago Med. Sch. 53: 61 – 62.Google Scholar
  66. 66.
    Robinson, B. A., and A. D. C. Macknight. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition. J. Membr. Biol. 26: 239 – 268.PubMedCrossRefGoogle Scholar
  67. 67.
    Kleinzeller, A. 1972. Cellular transport of water. In: Metabolic Pathways, Vol. 6: Metabolic Transport. Academic Press, New York.Google Scholar
  68. 67a.
    Hughes, P. M., and A. D. C. Macknight. 1977. Effects of replacing medium sodium by choline, caesium or rubidium, on water and ion contents of renal cortical slices. J. Physiol. (Lond.) 267: 113 – 136.Google Scholar
  69. 68.
    Glynn, I. M., V. L. Lew, and U. Luthi. 1970. Reversal of the potassium entry mechanism in red cells with and without reversal of the entire pump cycle. J. Physiol. (Lond.) 207: 371 – 391.Google Scholar
  70. 69.
    Lant, A. F., R. N. Priestland, and R. Whittam. 1970. The coupling of down-hill ion movements associated with the reversal of the sodium pump in human red cells. J. Physiol. (Lond.) 207: 291 – 301.Google Scholar
  71. 70.
    Sachs, J. R. 1971. Ouabain-insensitive sodium movements in the human red blood cell. J. Gen. Physiol. 57: 259 – 282.PubMedCrossRefGoogle Scholar
  72. 71.
    Giebisch, G., E. L. Boulpaep, and G. Whittembury. 1971. Electrolyte transport in kidney tubule cells. Philos. Trans. R. Soc. Lond. (Biol.) 262: 175 – 196.CrossRefGoogle Scholar
  73. 72.
    Giebisch, G., L. P. Sullivan, and G. Whittembury. 1973. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfused Necturus kidney, J. Physiol. (Lond.) 230:51– 74.Google Scholar
  74. 73.
    Proverbio, F., J. W. L. Robinson, and G. Whittembury. 1970. Sensitivities of Na-K-ATPase and Na extrusion mechanisms to ouabain and ethacrynic acid in the guinea-pig kidney portex. Biochim. Biophys. Acta 211: 327 – 336.CrossRefGoogle Scholar
  75. 74.
    Proverbio, F., M. Condrescu-Guidi, and G. Whittembury. 1975. Ouabain-insensitive Na+ stimulation of an Mg2+-dependent ATPase in kidney tissue. Biochim. Biophys. Acta 394: 281 – 292.PubMedCrossRefGoogle Scholar
  76. 75.
    Robinson, J. W. L. 1972. The inhibition of glycine and β-methylglucoside transport in dog kidney cortex slices by ouabain and ethacrynic acid: Contribution to the understanding of sodium-pumping mechanisms. Comp. Gen. Pharmacol. 3: 145 – 159.PubMedCrossRefGoogle Scholar
  77. 76.
    Whittembury, G., and J. Fishman. 1969. Relation between Na extrusion and transtubular absorption in the perfused toad kidney: The effect of K, ouabain and ethacrynic acid. Pfluegers Arch. 307: 138 – 153.CrossRefGoogle Scholar
  78. 77.
    Hoffman, J., and F. M. Kregenow. 1966. The characterization of new energy dependent cation transport processes in red blood cells. Ann. N.Y. Acad. Sci. 137: 566 – 576.PubMedCrossRefGoogle Scholar
  79. 78.
    Rettori, O., and J. P. Lenoir. 1972. Ouabain-insensitive active sodium transport in erythrocytes: Effect of external cations. Am. J. Physiol. 222: 880 – 884.PubMedGoogle Scholar
  80. 79.
    Lubowitz, H., and R. Whittam. 1969. Ion movements in human red cells independent of the sodium pump. J. Physiol. (Lond.) 202: 111 – 131.Google Scholar
  81. 80.
    Dunn, M. J. 1970. The effect of transport inhibitors on sodium outflux and influx in red blood cells: Evidence for exchange diffusion. J. Clin. Invest. 49: 1804 – 1814.PubMedCrossRefGoogle Scholar
  82. 81.
    Dunn, M. J. 1972. Ouabain-uninhibited Na transport in human erythrocytes: The effects of triflocin. Biochim. Biophys. Acta 255: 567 – 571.PubMedCrossRefGoogle Scholar
  83. 82.
    Dunn, M. J. 1973. Ouabain-inhibited sodium transport in human erythrocytes. Evidence against a second pump. J. Clin. Invest. 52: 658 – 670.PubMedCrossRefGoogle Scholar
  84. 83.
    Dunn, M. J., and R. Grant. 1974. The influence of the extracellular counterion on the sodium-dependent, ouabain-uninhibited sodium efflux from human erythrocytes. Biochim. Biophys. Acta 352: 117 – 121.PubMedCrossRefGoogle Scholar
  85. 84.
    Gordon, E. E. 1968. The site of action of ethacrynic acid on Ehrlich ascites tumour cells. Biochem. Pharmacol. 17: 1237 – 1242.PubMedCrossRefGoogle Scholar
  86. 85.
    Poat, P. C., J. A. Poat, and K. A. Munday. 1970. The site of action of the diuretic ethacrynic acid on rat kidney and liver tissue. Comp. Gen. Pharmacol. 1: 400 – 408.PubMedCrossRefGoogle Scholar
  87. 86.
    Gordon, E. E., and M. De Hartog. 1969. The relationship between cell membrane potassium transport and glycolysis. The effects of ethacrynic acid. J. Gen. Physiol. 54: 650 – 664.PubMedCrossRefGoogle Scholar
  88. 87.
    Klahr, S., J. Yates, and J. Bourgoignie. 1971. Inhibition of glycolysis by ethacrynic acid and furosemide. Am. J. Physiol. 221: 1038 – 1043.PubMedGoogle Scholar
  89. 88.
    Epstein, R. W. 1972. The effects of ehacrynic acid on active transport of sugars and ions and on other metabolic processes in rabbit kidney cortex. Biochim. Biophys. Acta 274: 128 – 139.PubMedCrossRefGoogle Scholar
  90. 89.
    Wiggins, P. M. 1975. A cation-anion nonelectrolyte pump. Med. Hypothesis March-April.Google Scholar
  91. 90.
    Robinson, J. R. 1971. Control of water content of non- metabolizing kidney slices by sodium chloride and polyethylene glycol (PEG 6000). J. Physiol. (Lond.) 213: 227 – 234.Google Scholar
  92. 91.
    Heyer, E., A. Cass, and A. Mauro. 1970. A demonstration of the effect of permeant and impermeant solutes and unstirred layers on osmotic flow. Yale J. Biol. Med. 42: 139 – 153.Google Scholar
  93. 92.
    Gary-Bobo, C. M., and A. K. Solomon. 1968. Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52: 825 – 853.PubMedCrossRefGoogle Scholar
  94. 93.
    Rand, R. P., and A. C. Burton. 1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4:115– 135.Google Scholar
  95. 94.
    Kleinzeller, A. 1965. The volume regulation in some animal cells. Arch. Biol. (Liege) 76: 217 – 232.Google Scholar
  96. 95.
    Kleinzeller, A., D. A. Ausiello, J. A. Almendares, and A. H. Davis. 1970. The effect of pH on sugar transport and ion distribution in kidney cortex cells. Biochim. Biophys. Acta 211: 293 – 307.CrossRefGoogle Scholar
  97. 96.
    Kleinzeller, A., and A. Knotkova. 1964. Electrolyte transport in rat diaphragm. Physiol Bohemoslov. 13: 317 – 326.PubMedGoogle Scholar
  98. 97.
    Kleinzeller, A., A. Knotkova, and J. Nedvidkova. 1968. The effect of calcium ions on the steady-state ionic distribution in kidney cortex cells. J. Gen. Physiol. 51:326s–334s.Google Scholar
  99. 98.
    Rorive, G., and A. Kleinzeller. 1972. The effect of ATP and Ca2+ on the cell volume in isolated kidney tubules. Biochim. Biophys. Acta 274: 226 – 239.PubMedCrossRefGoogle Scholar
  100. 99.
    Rorive, G., R. Nielsen, and A. Kleinzeller. 1972. Effect of pH on the water and electrolyte content of renal cells. Biochim. Biophys. Acta 266: 376 – 396.PubMedCrossRefGoogle Scholar
  101. 100.
    Hazelwood, C. F., ed. 1973. Physicochemical state of ions and water in living tissues and model systems. Ann. N.Y. Acad. Sci. 204:1–631.Google Scholar
  102. 101.
    Wiggins, P. M. 1975. Cellular functions of a cell in a metastable equilibrium state. J. Theor. Biol. 52:99– 111.Google Scholar
  103. 102.
    Cooke, R., and I. D. Kuntz. 1974. The properties of water in biological systems. Annu. Rev. Biophys. Bioeng. 3: 95 – 126.PubMedCrossRefGoogle Scholar
  104. 103.
    Civan, M. M., and M. Shporer. 1975. Pulsed nuclear magnetic resonance study of170, 2D, and 1H of water in frog striated muscle. Biophys. J. 15: 299 – 306.PubMedCrossRefGoogle Scholar
  105. 104.
    Robinson, J. R. 1975. Colloid osmotic pressure as a cause of pathological swelling of cells. In: Pathobiology of Cell Membranes, Vol. 1. B. F. Trump and A. U. Arstila, eds. Academic Press, New York.Google Scholar
  106. 105.
    Darrow, D. C., and H. Yannet. 1935. The changes in the distribution of body water accompanying increase and decrease in extracellular electrolyte. J. Clin. Inves. 14: 266 – 275.CrossRefGoogle Scholar
  107. 106.
    Robinson, J. R. 1954. Metabolism of intracellular water. Physiol. Rev. 40: 112 – 149.Google Scholar
  108. 107.
    Robinson, J. R. 1965. Water regulation in mammalian cells. Symp. Soc. Exp. Biol. 19: 237 – 258.PubMedGoogle Scholar
  109. 108.
    Dydnska, M., and D. R. Wilkie. 1963. The osmotic properties of striated muscle fibres in hypertonic solutions. J. Physiol. (Lond.) 169: 312 – 329.Google Scholar
  110. 109.
    Ponder, E. 1948. Hemolysis and Related Phenomena, 1st ed. Grune amp; Stratton, New York.Google Scholar
  111. 110.
    Dick, D. A. T. 1971. Water movements in cells. In: Membranes and Ion Transport, Vol. 3. E. E. Bittar, ed. Wiley (Interscience), New York.Google Scholar
  112. 111.
    Whittam, R. 1964. Transport and Diffusion in Red Blood Cells. Edward Arnold, London, and Williams amp; Wilkins, Baltimore.Google Scholar
  113. 112.
    Davson, H. 1940. Ionic permeability: The comparative effects of environmental changes on the permeability of the cat erythrocyte membrane to sodium and potassium. J. Cell. Comp. Physiol. 15: 317 – 330.CrossRefGoogle Scholar
  114. 113.
    Elford, B. C., and A. K. Solomon. 1974. Factors influencing Na+ transport in dog red cells. Biochim. Biophys. Acta 373: 253 – 264.PubMedCrossRefGoogle Scholar
  115. 114.
    Poznansky, M., and A. K. Solomon. 1972. Regulation of human red cell volume by linked cation fluxes. J. Membr. Biol. 10: 259 – 266.CrossRefGoogle Scholar
  116. 115.
    Kregenow, F. M. 1971. The response of duck erythrocytes to non-hemolytic hypotonic media. Evidence for a volume-controlling mechanism. J. Gen. Physiol. 58: 372 – 395.PubMedCrossRefGoogle Scholar
  117. 116.
    Kregenow, F. M. 1971. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J. Gen. Physiol. 58: 396 – 412.PubMedCrossRefGoogle Scholar
  118. 117.
    Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. J. Gen. Physiol. 61: 509 – 527.PubMedCrossRefGoogle Scholar
  119. 118.
    Kregenow, F. M. 1974. Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells. J. Gen. Physiol. 64: 393 – 412.PubMedCrossRefGoogle Scholar
  120. 119.
    Hendil, K. B., and E. K. Hoffman. 1974. Cell volume regulation in Ehrlich ascites tumour cells. J. Cell Physiol. 84: 115 – 126.PubMedCrossRefGoogle Scholar
  121. 120.
    Schoffeniels, E. 1967. Cellular Aspects of Membrane Permeability. Pergamon, Oxford.Google Scholar
  122. 121.
    Hughes, P. M., and A. D. C. Macknight. 1977. The regulation of cellular volume in renal cortical slices incubated in hypoosmotic medium. J. Physiol. (Lond.) 257: 137 – 154.Google Scholar
  123. 122.
    Davey, K. J., andD. C. G. Skegg. 1971. The effects of high concentrations of an electrolyte on the swelling of non-metabolizing tissue slices. J. Physiol. (Lond.) 212: 641 – 654.Google Scholar
  124. 123.
    Mclver, D. J. L., and A. E. G. Raine. 1972. The influence of electrolytes on the volume of non-metabolizing renal cortical cells. J. Physiol. (Lond.) 225: 555 – 564.Google Scholar
  125. 124.
    Law, R. O. 1975. The inulin space, solute concentrations, and weight changes in tat renal medullary slices incubated in iso-osmolal media, and their modifications during anoxia and hypothermia. J. Physiol. (Lond.) 247: 37 – 54.Google Scholar
  126. 125.
    Law, R. O. 1975. Volume adjustment by renal medullary cells in hypo- and hyper-osmolal solutions containing permeant and impermeant solutes. J. Physiol. (Lond.) 247: 55 – 70.Google Scholar
  127. 126.
    Ganóte, C. E., J. J. Grantham, H. L. Moses, M. B. Burg, and J. Orloff. 1968. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36: 355 – 367.PubMedCrossRefGoogle Scholar
  128. 127.
    Grantham, J. J., C. E. Ganóte, M. B. Burg, and J. Orloff. 1969. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41:562– 576.Google Scholar
  129. 128.
    DiBona, D. R., M. M. Civan, and A. Leaf. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membr. Biol. 1: 79 – 91.CrossRefGoogle Scholar
  130. 129.
    Ussing, H. H. 1965. Relationship between osmotic reactions and active sodium transport in frog skin epithelium. Acta Physiol. Scand. 63: 141 – 155.PubMedCrossRefGoogle Scholar
  131. 130.
    Bentley, P. J., O. A. Candia, M. Parisi, and A. J. Saladino. 1973. Effects of hyperosmolality on transmural sodium transport in the toad bladder. Am. J. Physiol. 225: 818 – 824.PubMedGoogle Scholar
  132. 131.
    Lipton, P. 1972. Effect of changes in osmolality on sodium transport across the isolated toad bladder. Am. J. Physiol. 222: 821 – 828.PubMedGoogle Scholar
  133. 132.
    Martinez-Maldonado, M., J. C. Allen, C. Inagaki, N. Tsaparas, and A. Schwartz. 1972. Renal sodium-potassium-activated adenosine triphosphatase and sodium reabsorption. J. Clin Invest. 51: 2544 – 2551.PubMedCrossRefGoogle Scholar
  134. 133.
    Nelson, J. A., and B. R. Nechay. 1970. Effects of cardiac glycosides on renal adenosine triphosphatase activity and Na+ reabsorption in dogs. J. Pharmacol. Exp. Ther. 175: 727 – 740.PubMedGoogle Scholar
  135. 134.
    Torretti, J., E. Hendler, E. Weinstein, R. E. Longnecker, and F. H. Epstein. 1972. Functional significance of Na-K-ATPase in the kidney: Effects of ouabain inhibition. Am. J. Physiol. 222: 1398 – 1405.PubMedGoogle Scholar
  136. 135.
    Bowman, R. H., U. Dolgin, and R. Coulson. 1973. Interaction between ouabain and furosemide on Na and K excretion in perfused rat kidney. Am. J. Physiol. 224: 1200 – 1205.PubMedGoogle Scholar
  137. 136.
    Ross, B., A. Leaf, P. Silva, and F. H. Epstein. 1974. Na-K-ATPase in sodium transport by the perfused rat kidney. Am. J. Physiol. 226: 624 – 629.PubMedGoogle Scholar
  138. 137.
    Gyory, A. Z., U. Brendel, and R. Kinne. 1972. Effect of cardiac glycosides and sodium ethacrynate on transepithelial sodium transport in in vivo micropuncture experiments and on isolated plasma membrane Na-K-ATPase in vitro of the rat. Pfluegers Arch. 335: 287 – 296.CrossRefGoogle Scholar
  139. 138.
    Gyory, A. Z., J. M. Lingard, and J. A. Young. 1974. Cardiac glycoside inhibition of active sodium transport in rat proximal tubules: Evidence for a multisite allosteric transport system. Proc. Aust. Physiol. Pharmacol. Soc. 5: 208 – 210.Google Scholar
  140. 139.
    Buig, M. B., and J. Orloff. 1970. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219: 1714 – 1716.Google Scholar
  141. 140.
    Cardinal, J., M. D. Lutz, M. B. Burg, and J. Orloff. 1975. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 7: 94 – 102.PubMedCrossRefGoogle Scholar
  142. 141.
    Koefoed-Johnsen, V. 1957. The effect of g-strophanthin (ouabain) on the active transport of sodium through the isolated frog skin. Acta Physiol. Scand. 42 (Suppl. 145): 87 – 88.Google Scholar
  143. 142.
    Herrera, F. C. 1968. Action of ouabain on bioelectric properties and ion content in toad urinary bladder. Am. J. Physiol. 215: 183 – 189.PubMedGoogle Scholar
  144. 143.
    Macknight, A. D. C. 1968. The regulation of cellular volume in rat renal cortical slices. Ph.D. Thesis. University of Otago.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Anthony D. C. Macknight
    • 1
  • Alexander Leaf
    • 2
    • 3
  1. 1.Department of PhysiologyThe Medical School, University of OtagoDunedinNew Zealand
  2. 2.Medical ServicesMassachusetts General HospitalBostonUSA
  3. 3.Department of MedicineHarvard University Medical SchoolBostonUSA

Personalised recommendations