Skip to main content

Na and K Transport in Red Blood Cells

  • Chapter

Abstract

This chapter on active transport is intended to be a rather practical treatment of the subject in terms of what active transport is, how it can be distinguished from other types of membrane transport, and a survey of its characteristics in some depth. The idea of active transport stems from the fact that cells are able to accumulate and maintain large concentration gradients of permeant substances across their plasma membranes. Because of the ubiquitous occurrence of such processes in living cells and tissues, our purpose can best be served by limiting our discussion to the active transport of the cations, Na and K, and using information derived mainly from studies on red blood cells. Thus, it is hoped that our considerations of basic principles in one cell type will emphasize those features common to all cell types rather than those differences which distinguish one cell type from another.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. W. 1967. Cation transport in duck erythrocytes. Ph.D. Thesis, Duke University.

    Google Scholar 

  2. Bader, H., and A. K. Sen. 1966. (K+)-dependent acyl phosphatase as part of the (Na+ + K+)-dependent ATPase of cell membranes. Biochim. Biophys. Acta 118: 116.

    Google Scholar 

  3. Battley, E. H., and I. M. Klotz. 1951. Interaction of sodium and potassium ions with hemoglobin and with hemerythrin. Biol. Bull. 101: 215.

    Google Scholar 

  4. Beauge, L. A., and N. Adragna. 1971. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J. Gen. Physiol. 57: 576.

    Article  PubMed  CAS  Google Scholar 

  5. Bergelson, L. D., and L. I. Barsukov. 1977. Topological asymmetry of phospholipids in membranes. Science 197: 244.

    Article  Google Scholar 

  6. Blostein, R. 1968. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J. Biol. Chem. 243: 1957.

    PubMed  CAS  Google Scholar 

  7. Blostein, R. 1970. Sodium activated adenosine triphosphatase activity of the erythrocyte membrane. J. Biol. Chem. 245: 270.

    PubMed  CAS  Google Scholar 

  8. Blostein, R., and L. Chu. 1977. Sidedness of (sodium, potassium)-adenosine triphosphatase of inside-out red cell membrane vesicles. J. Biol. Chem. 252: 3035.

    PubMed  CAS  Google Scholar 

  9. Bodemann, H. H., and J. F. Hoffman. 1976. Side- dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J. Gen. Physiol. 67: 497.

    Article  PubMed  CAS  Google Scholar 

  10. Bodemann, H. H., and J. F. Hoffman. 1976. Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red cell ghosts and the control of Na transport by internal Mg. J. Gen. Physiol. 67: 547.

    Article  PubMed  CAS  Google Scholar 

  11. Cavieres, J. D. 1977. The sodium pump in human red cells. In: Transport in Red Cells. J. C. Ellory and V. L. Lew, eds. Academic Press, London, p. 1.

    Google Scholar 

  12. Cook, J. S. 1965. The quantitative interrelationships between ion fluxes, cell swelling and radiation dose in ultraviolet hemolysis. J. Gen. Physiol. 48: 719.

    Article  PubMed  CAS  Google Scholar 

  13. Cook, J. S. 1967. Nonsolvent water in human erythrocytes. J. Gen. Physiol. 50: 1311.

    Article  PubMed  CAS  Google Scholar 

  14. Dalmark, M. 1975. Chloride and water distribution in human red cells. J. Physiol. 250: 65.

    PubMed  CAS  Google Scholar 

  15. Danowski, T. S. 1941. The transfer of potassium across the human blood cell membrane. J. Biol. Chem. 139: 693.

    CAS  Google Scholar 

  16. Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331.

    CAS  Google Scholar 

  17. Dick, D. A. T. 1959. Osmotic properties of living cells. Int. Rev. Cytol. 8: 387.

    Article  PubMed  CAS  Google Scholar 

  18. Dick, D.A.T. 1967. An approach to the molecular structure of the living cell by water flux studies. In: Physical Basis of Circulatory Transport. E. B. Reeve and A. G. Guyton, eds. W. B. Saunders, Philadelphia, p. 217.

    Google Scholar 

  19. Dunham, E. T., and Glynn, I. M. 1961. Adenosine triphosphatase activity and the active movements of alkali metal ions. J. Physiol. 156: 274.

    PubMed  CAS  Google Scholar 

  20. Dunham, P. B. 1976. Passive potassium transport in LK sheep red cells. Effect of anti-L antibody and intracellular potassium. J. Gen. Physiol. 68: 567.

    Article  PubMed  CAS  Google Scholar 

  21. Dunham, P. B., and J. S. Bleier. 1973. Potassium effluxes in goat red blood cells. Physiologist 16: 301.

    Google Scholar 

  22. Dunham, P. B. and R. Blostein. 1976. Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim. Biophys. Acta 455: 749.

    Article  PubMed  CAS  Google Scholar 

  23. Dunham, P. B., and J. F. Hoffman. 1970. Partial purification of the ouabain-binding component and of Na,K-ATPase from human red cell membranes. Proc. Natl. Acad. Sci. U.S.A. 66: 936.

    Article  PubMed  CAS  Google Scholar 

  24. Dunham, P. B., and O. Senyk. 1977. Lithium efflux through the Na/K pump in human erythrocytes. Proc. Natl. Acad. Sei. U.S.A. 74: 3099.

    Article  CAS  Google Scholar 

  25. Edzes, H. T., and H. J. C. Berendsen. 1975. The physical state of diffusible ions in cells. Biophys. Bioeng. 4: 265.

    Article  CAS  Google Scholar 

  26. Eisenmann, G. 1961. On the elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, eds. Academic Press, New York. p. 163.

    Google Scholar 

  27. Fahn, S., M. R. Hurley, G. J. Koval, and R. W. Albers. 1966. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents. J. Biol. Chem. 241: 1890.

    PubMed  CAS  Google Scholar 

  28. Fahn, S., G. J. Koval, and R. W. Albers. 1968. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32?. J. Biol. Chem. 243: 1993.

    Google Scholar 

  29. Fitzsimons, E. J., and J. Sendroy. 1961. Distribution of electrolytes in human blood. J. Biol. Chem. 236: 1595.

    CAS  Google Scholar 

  30. Freedman, J. C., and J. F. Hoffman. 1977. Hemoglobin charge and membrane potentials in human red blood cells at varying volume. Abstract. XX VII International Congress on Physiological Science, Paris.

    Google Scholar 

  31. Fricke, H., and S. Morse. 1925. The electric resistance and capacity of blood for frequencies between 800 and 4 l k million cycles. J. Gen. Physiol. 9: 153.

    Article  PubMed  CAS  Google Scholar 

  32. Funder, J., and J. O. Wieth. 1966. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68: 234.

    Article  CAS  Google Scholar 

  33. Garay, R. P., and P. J. Garrahan. 1973. The interaction of sodium and potassium with the sodium pump in red cells. J. Physiol. 231: 297.

    PubMed  CAS  Google Scholar 

  34. Gardos, G. 1954. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol. Hung. 6: 191.

    PubMed  CAS  Google Scholar 

  35. Garrahan, P. J., and I. M. Glynn. 1967. The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol. 192: 159.

    PubMed  CAS  Google Scholar 

  36. Garrahan, P. J., and I. M. Glynn. 1967. Factors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J. Physiol. 192: 189.

    PubMed  CAS  Google Scholar 

  37. Garrahan, P. J., and I. M. Glynn. 1967. The stoichi- ometry of the sodium pump. J. Physiol. 192: 217.

    PubMed  CAS  Google Scholar 

  38. Garrahan, P. J., and I. M. Glynn. 1967. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. 192: 237.

    PubMed  CAS  Google Scholar 

  39. Garrahan, P. J., M. I. Pouchan, and A. F. Rega. 1969. Potassium-activated phosphatase from human red blood cells: The mechanism of potassium activation. J. Physiol. 202: 305.

    PubMed  CAS  Google Scholar 

  40. Gary-Bobo, C. M., and A. K. Solomon. 1968. Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52: 825.

    Article  PubMed  CAS  Google Scholar 

  41. Gary-Bobo, C. M., and A. K. Solomon. 1971. Hemoglobin charge dependence on hemoglobin concentration in vitro. J. Gen. Physiol. 224: 88.

    Google Scholar 

  42. Glynn, I. M. 1956. Sodium and potassium movements in human red cells. J. Physiol. 134: 278.

    PubMed  CAS  Google Scholar 

  43. Glynn, I. M. 1957. The action of cardiac glycosides on sodium and potassium movements in human red cell. J. Physiol. 136: 148.

    PubMed  CAS  Google Scholar 

  44. Glynn, I. M., and J. F. Hoffman. 1971. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J. Physiol. 218: 239.

    PubMed  CAS  Google Scholar 

  45. Glynn, I. M., J. F. Hoffman, and V. L. Lew. 1971. Some “partial reactions” of the sodium pump. Phil. Trans. Roy. Soc. Lond. B. 262: 91.

    Article  CAS  Google Scholar 

  46. Glynn, I. M., S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13.

    Article  PubMed  CAS  Google Scholar 

  47. Glynn, I. M., and S. J. D. Karlish. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium. J. Physiol. 256: 465.

    PubMed  CAS  Google Scholar 

  48. Glynn, I. M., and V. L. Lew. 1970. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells. J. Physiol. 207: 393.

    PubMed  CAS  Google Scholar 

  49. Glynn, I. M., V. L. Lew, and U. Liithi. 1970. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J. Physiol. 207: 371.

    PubMed  CAS  Google Scholar 

  50. Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37.

    Article  PubMed  CAS  Google Scholar 

  51. Harris, E. J., and M. Maizels. 1951. The permeability of human erythrocytes to sodium. J. Physiol. 113: 506.

    PubMed  CAS  Google Scholar 

  52. Harris, J. E. 1941. The influence of the metabolism of human erythrocytes on their potassium content. J. Biol. Chem. 141: 579.

    CAS  Google Scholar 

  53. Hilden, S., and L. Hokin. 1975. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthis. J. Biol. Chem. 250: 6296.

    CAS  Google Scholar 

  54. Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerves. J. Gen. Physiol. 59: 637.

    Article  PubMed  CAS  Google Scholar 

  55. Hille, B. 1973. Potassium channel in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61: 669.

    Article  PubMed  CAS  Google Scholar 

  56. Hobbs, A. S., and P. B. Dunham. 1975. Comparison of the effects of external monovalent cations on active cation transport and on the rate of ouabain binding in human red cells. Fed. Proc. 34: 249.

    Google Scholar 

  57. Hobbs, A. S., and P. B. Dunham. 1976. Evidence for two sodium sites on the external aspect of Na-K pump in human erythrocytes. Nature 260: 651.

    Article  PubMed  CAS  Google Scholar 

  58. Hober, R. 1912. Einzweites Verfahren, die Leitfahrig- keit im Innern von Zellen zu messen. Pflugers Arch. 133: 237.

    Article  Google Scholar 

  59. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37.

    PubMed  CAS  Google Scholar 

  60. Hoffman, J. F. 1958. Physiological characteristics of human red blood cell ghosts. J. Gen. Physiol. 42: 9.

    Article  PubMed  CAS  Google Scholar 

  61. Hoffman, J. F. 1960. The link between metabolism and the active transport of Na in human red cell ghosts. Fed. Proc. 19: 127.

    Google Scholar 

  62. Hoffman, J. F. 1962. The active transport of sodium by ghosts of human red blood cells. J. Gen. Physiol. 45: 837.

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman, J. F. 1966. The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41: 666.

    Article  PubMed  CAS  Google Scholar 

  64. Hoffman, J. F. 1969. The interaction between tritiated ouabain and the Na-K pump in red blood cells. J. Gen. Physiol. 54: 343s.

    CAS  Google Scholar 

  65. Hoffman, J. F. 1972. Sidedness of the red cell Na:K pump. In: Role of Membranes in Secretory Processes. L. Bolis, R. D. Keynes, and W. Wilbrandt, eds. North-Holland Publ., Amsterdam, p. 203.

    Google Scholar 

  66. Hoffman, J. F., M. Eden, J. S. Barr, and R. H. S. Bedell, 1958. The hemolytic volume of human erythrocytes. J. Cell. Comp. Physiol. 51: 405.

    Article  Google Scholar 

  67. Hoffman, J. F., and P. L. Laris. 1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239: 519.

    PubMed  CAS  Google Scholar 

  68. Hoffman, J. F., and U. V. Lassen. 1971. Plasma membrane potentials in Amphiuma red cells. Proceeding XXV International Congress on Physiological Science, Vol. IX, Munich, p. 243.

    Google Scholar 

  69. Hunter, M. J. 1971. A quantitative estimate ot the non-exchange-restricted chloride permeability of the human red cell. J. Physiol. 218: 49 P.

    Google Scholar 

  70. Hutchinson, E. 1952. Behavior of human erythrocytes in aqueous alcohol solutions. Arch. Biochem. Biophys. 38: 35.

    Article  PubMed  CAS  Google Scholar 

  71. Jacobs, M. H., and D. R. Stewart. 1947. Osmotic properties of the erythrocyte. XII. Ionic and osmotic equilibria with a complex external solution. J. Cell. Comp. Physiol. 30: 79.

    Article  CAS  Google Scholar 

  72. Joiner, C. H., and P. K. Lauf. 1977. Relationship between K pump flux and 3H-ouabain binding rate in human and sheep red cells. Fed. Proc. 36: 563.

    Google Scholar 

  73. Jorgensen, P. L. 1974. Purification and characterization of (Na+ + K+)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparation from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 356: 53.

    Article  PubMed  CAS  Google Scholar 

  74. Jørgensen, P. L. 1975. Purification and characterization of (Na+ + K+)-ATPase. V. Conformational changes in the enzyme transitions between the Na- form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta 401: 399.

    Article  PubMed  CAS  Google Scholar 

  75. Jorgensen, P. L., D. Hansen, I. M. Glynn, and J. D. Cavieres. 1973. Antibodies to pig kidney (Na+ + K+)- ATPase inhibit the Na+ pump in human red cells provided they have access to the inner surface of the cell membranes. Biochim. Biophys. Acta 291: 795.

    Article  PubMed  CAS  Google Scholar 

  76. Judah, J. D., K. Ahmed, and A. E. M. McLean. 1962. Ion transport and phosphoproteins of human red cells. Biochim. Biophys. Acta 65: 472.

    Article  CAS  Google Scholar 

  77. Katchalsky, A. 1970. A thermodynamic consideration of active transport. In: Permeability and Function of Biological Membranes. L. Bolis, A. KatchaJsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, eds. North-Holland, Publ., Amsterdam, p. 20.

    Google Scholar 

  78. Kepner, G. R., and R. I. Macey. 1968. Membrane enzyme systems: Molecular size determinations by radiation inactivation. Biochim. Biophys. Acta 163: 188.

    Article  PubMed  CAS  Google Scholar 

  79. Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na,K-ATPase in human red cell ghosts. J. Gen. Physiol. 63: 324.

    Article  PubMed  CAS  Google Scholar 

  80. Knight, A. B., and L. G. Welt. 1974. Intracellular potassium. A determinant of the sodium-potassium pump rate. J. Gen. Physiol. 63: 351.

    Article  PubMed  CAS  Google Scholar 

  81. Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. J. Gen. Physiol. 61: 509.

    Article  PubMed  CAS  Google Scholar 

  82. Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rorth and P. Astrup, eds. Benzon. Symp. Munksgaard, Copenhagen, p. 291.

    Google Scholar 

  83. Lew, V. L., I. M. Glynn, and J. C. Ellory. 1970. Net synthesis of ATP by reversal of the sodium pump. Nature 225: 865.

    Article  PubMed  CAS  Google Scholar 

  84. Maizels, M. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium, or lithium chloride. J. Physiol. 195: 657.

    PubMed  CAS  Google Scholar 

  85. McConaghey, P. D., and M. Maizels. 1962. Cation exchanges of lactose-treated human red cells. J. Physiol. 162: 485.

    PubMed  CAS  Google Scholar 

  86. Miller, D. M. 1964. Sugar uptake as a function of cell volume in human erythrocytes. J. Physiol. 170: 219.

    PubMed  CAS  Google Scholar 

  87. Minakami, S., K. Kakinuma, and H. Yoshikawa. 1964. The control of erythrocyte glycolysis by active cation transport. Biochim. Biophys. Acta 90: 434.

    PubMed  CAS  Google Scholar 

  88. Morris, R., and R. D. Wright. 1954. On the interaction of hemoglobin with sodium and potassium. Austr. J. Exp. Biol. 32: 669.

    Article  CAS  Google Scholar 

  89. Mullins, L. J. 1975. Ion selectivity of carriers and channels. Biophys. J. 15: 921.

    Article  PubMed  CAS  Google Scholar 

  90. Murphy, J. M. 1963. Erythrocyte metabolism: V. Active cation transport and glycolysis. J. Lab. Clin. Med. 61: 567.

    PubMed  CAS  Google Scholar 

  91. Newsholme, E. A., and C. Start. 1973. Regulation in Metabolism. Wiley, London. 349 pp.

    Google Scholar 

  92. Parker, J. C. 1973. Dog red blood cells: Adjustment of density in vivo. J. Gen. Physiol. 61: 146.

    Google Scholar 

  93. Parker, J. C., and J. F. Hoffman. 1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by cation transport in human red blood cells. J. Gen. Physiol. 50: 893.

    Article  PubMed  CAS  Google Scholar 

  94. Parker, J. C., and J. F. Hoffman. 1976. Influences of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433: 404.

    Google Scholar 

  95. Parpart, A. K., and J. C. Schnell. 1935. Solvent water in the normal mammalian erythrocyte. J. Cell Comp. Physiol. 6: 137.

    Article  CAS  Google Scholar 

  96. Perrone, J. R., and R. Blostein. 1973. Asymmetric interaction of inside-out and right-side out erythrocyte membrane vesicles with ouabain. Biochim. Biophys. Acta 291: 680.

    Article  PubMed  CAS  Google Scholar 

  97. Ponder, E. 1948. Volume changes in hemolytic systems containing resorcinol, taurocholate, and saponin. J. Gen. Physiol. 31: 325.

    Article  PubMed  CAS  Google Scholar 

  98. Ponder, E. 1948. Hemolysis and Related Phenomena. Grune and Stratton, New York. 398 pp.

    Google Scholar 

  99. Post, R. L., C. D. Albright, and K. Dayani. 1967. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J. Gen. Physiol. 50: 1201.

    Article  PubMed  CAS  Google Scholar 

  100. Post, R. L., and P. C. Jolly. 1957. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118.

    Article  PubMed  CAS  Google Scholar 

  101. Post, R. L., S. Kume, T. Tobin, B. Orcutt, and A. K. Sen. 1969. Flexibility of an active center in sodium- plus-potassium adenosine triphosphatase. J. Gen. Physiol. 54: 306s.

    Article  CAS  Google Scholar 

  102. Post, R. L., C. R. Merritt, C. R. Kinsolving, and C. D. Albright. 1960. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235: 1796.

    PubMed  CAS  Google Scholar 

  103. Proverbio, F., and J. F. Hoffman. 1977. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 69: 605.

    Article  PubMed  CAS  Google Scholar 

  104. Rand, R. P., and A. L. Burton. 1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4: 115.

    Article  PubMed  CAS  Google Scholar 

  105. Rega, A. F., P. J. Garrahan, and M. I. Pouchan. 1970. Potassium-activated phosphatase from human red blood cells: The asymmetric effect of K+, Na+, Mg++, and adenosine triphosphate. J. Membrane Biol. 3: 14.

    Article  CAS  Google Scholar 

  106. Robinson, J. D., E. S. Hall, and P. B. Dunham. 1977. Reversal of the Na-K pump and apparent affinity for intracellular potassium. Nature 269: 165.

    Article  PubMed  CAS  Google Scholar 

  107. Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Butterworth, London. 559 pp.

    Google Scholar 

  108. Roepke, R. R., and E. J. Baldes. 1942. A study of the osmotic properties of erythrocytes. J. Cell. Comp. Physiol. 20: 71.

    Article  CAS  Google Scholar 

  109. Rosenberg, J. 1954. The concept and definition of active transport. Symp. Soc. Exp. Biol. 8: 27.

    CAS  Google Scholar 

  110. Ryan, H. E., and J. F. Hoffman. 1960. In: Regulation of the Inorganic Ion Content of Cells. G. E. W. Wohlstenholme and C. M. O’Connor, eds. Ciba Foundation Study Group No. 5. J. A. Churchill, London. p. 18.

    Google Scholar 

  111. Sachs, J. R. 1971. Ouabain-insensitive sodium movements in the human red blood cell. J. Gen. Physiol. 57: 259.

    Article  PubMed  CAS  Google Scholar 

  112. Sachs, J. R. 1974. Interaction of external K, Na and cardioactive steroids with the Na-K pump of the human red blood cell. J. Gen. Physiol. 63: 123.

    Article  PubMed  CAS  Google Scholar 

  113. Sachs, J. R., J. C. Ellory, D. L. Kropp, P. B. Dunham, and J. F. Hoffman. 1974. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J. Gen. Physiol. 63: 389.

    Article  PubMed  CAS  Google Scholar 

  114. Sachs, J. R., and L. G. Welt. 1967. The concentration dependence of active potassium transport in the human red blood cell. J. Clin. Invest. 46: 65.

    Article  PubMed  CAS  Google Scholar 

  115. Schatzmann, H. J. 1953. Herzglykoside als Hemmstofife fur den aktiven Kalium und Natrium-transport durch die Erythrocytenmembran. Helv. Physiol. Pharmacol. Acta 11: 346.

    PubMed  CAS  Google Scholar 

  116. Schrier, S. L., and L. S. Doak. 1963. Studies of the metabolism of human erythrocyte membranes. J. Clin. Invest. 42: 756.

    Article  PubMed  CAS  Google Scholar 

  117. Sen, A. K., and R. L. Post. 1964. Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem. 239: 345.

    PubMed  CAS  Google Scholar 

  118. Shaw, T. I. 1955. Potassium movements in washed erythrocytes. J. Physiol. 129: 464.

    PubMed  CAS  Google Scholar 

  119. Simons, T. J. B. 1975. The interaction of ATP-analogues possessing a blocked-phosphate group with the sodium pump in human red cells. J. Physiol. 244: 731.

    PubMed  CAS  Google Scholar 

  120. Skou, J. C. 1957. Influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394.

    Article  PubMed  CAS  Google Scholar 

  121. Solomon, A. K., T. J. Gill, and G. L. Gold. 1956. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J. Gen. Physiol. 40: 327.

    Article  PubMed  CAS  Google Scholar 

  122. Steck, T. L., R. S. Weinstein, J. H. Straus, and D. F. H. Wallach. 1970. Inside-out red cell membrane vesicles: Preparation and purification. Science 168: 255.

    Article  PubMed  CAS  Google Scholar 

  123. Stein, W. D., W. R. Lieb, S. J. D. Karlish, and Y. Eilam. 1973. A model for the active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. Natl. Acad. Sci. U.S.A. 70: 275.

    Article  PubMed  CAS  Google Scholar 

  124. Steinbach, H. B. 1940. Sodium and potassium in frog muscle. J. Biol. Chem. 133: 695.

    CAS  Google Scholar 

  125. Stoner, L. C., and F. M. Kregenow. 1976. Chloride fluxes and voltage measurements in single red blood cells. Biophys. J. 16: 170a.

    Google Scholar 

  126. Tosteson, D. C. 1959. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19.

    Article  CAS  Google Scholar 

  127. Tosteson, D. C., R. B. Gunn, and J. O. Wieth. 1973. Chloride and hydroxyl ion conductance of sheep red cell membranes. In: Erythrocytes, Thrombocytes and Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Williams, eds. Thieme, Stuttgart, p. 62.

    Google Scholar 

  128. Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169.

    Article  PubMed  CAS  Google Scholar 

  129. Van Slyke, D. D., H. Wer, and F. C. McLean. 1923. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56: 765.

    Google Scholar 

  130. Warburg, E. 1922. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. Biochem. J. 16: 153.

    PubMed  CAS  Google Scholar 

  131. Whittam, R. 1962. The asymmetrical stimulation of a membrane adenosine triphosphate in relation to active cation transport. Biochem. J. 84: 100.

    Google Scholar 

  132. Whittam, R., and M. E. Ager. 1964. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem. J. 93: 337.

    PubMed  CAS  Google Scholar 

  133. Whittman, R., and M. E. Ager. 1965. The connexion between active cation transport and metabolism in erythrocytes. Biochem. J. 97: 214.

    Google Scholar 

  134. Wilbrandt, W. 1941. Osmotische Natur Segenarnatur nicht-osmotischer Hamolysen. (Kolloidosmotische Hamolyse). Pflugers Arch. Ges. Physiol. 245: 22.

    Article  CAS  Google Scholar 

  135. Williams, T. F., C. C. Fordham, W. Hollander, and L. G. Wilt. 1969. Osmotic behavior of human red blood cells. J. Clin. Invest. 38: 1587.

    Article  Google Scholar 

  136. Wieth, J. O., J. Funder, R. B. Gunn, and J. Brahm. 1974. Passive transport pathways for chloride and urea through the red cell membrane. In: Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds. North- Holland Publ., Amsterdam, p. 317.

    Google Scholar 

  137. Wintrobe, M. M. 1933. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol. 51: 32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Dunham, P.B., Hoffman, J.F. (1978). Na and K Transport in Red Blood Cells. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics