Skip to main content

Optical Oscillator Strengths by Electron Impact Spectroscopy

  • Chapter
  • 292 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The measurement of an optical oscillator strength (OOS) for an atomic transition has “classically” been done using the standard methods of absorption spectroscopy, (1) i.e., beam attenuation, and of anomalous dispersion and emission techniques. All of these methods involve the production of light sources and/or the detection of emitted photons coupled with the experimental difficulties(2) incurred, especially at shorter wavelengths. Consequently these classical methods have been applied mostly to transitions in the visible region of the spectrum. Recent developments, (3) however, have extended the convenient usable range of such laboratory light sources to less than 600 Å; but for shorter wavelengths the requirement of a synchrotron radiation source becomes necessary, with its attendant cost and size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. G. Mitchell and N. W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge (1934).

    Google Scholar 

  2. J. A. R. Samson, Advances in Atomic and Molecular Physics, Vol. 2, p. 177, Academic Press, New York (1966).

    Google Scholar 

  3. W. R. S. Garton, J. P. Connerade, M. W. D. Mansfield, and J. E. G. Wheaton, Appl Opt. 8, 919 (1969).

    Article  ADS  Google Scholar 

  4. A. Skerbele, M. A. Dillon, and E. N. Lassettre, J. Chem. Phys. 46, 4161 (1967).

    Article  ADS  Google Scholar 

  5. G. A. Haas, Methods Exp. Phys. 4A, 25 (1967).

    Google Scholar 

  6. T. Shuttleworth, Thesis, University College London (1977); T. Shuttleworth, W. R. Newell, and A. C. H. Smith, J. Phys. B, 10, 1641 (1977).

    Google Scholar 

  7. P. Marmet and L. Kerwin, Can. J. Phys. 38, 787 (1960).

    Article  ADS  Google Scholar 

  8. C. E. Kuyatt and J. A. Simpson, Rev. Sci. Instrum. 38, 193 (1966).

    Google Scholar 

  9. J. A. Simpson, Rev. Sci. Instrum. 35, 1698 (1964).

    Article  ADS  Google Scholar 

  10. J. E. Lano and W. Raith, Phys. Rev. Lett. 30, 193 (1973).

    Article  ADS  Google Scholar 

  11. D. G. Wilden, P. J. Hicks, and J. Cromer, J. Phys. B 9, 1959 (1976).

    Article  ADS  Google Scholar 

  12. R. E. Fox, W. M. Hickam, D. J. Grove, and A. S. Kjelda, Rev. Sci. Instrum. 26, 1101 (1951).

    Article  ADS  Google Scholar 

  13. M. F. Rudd, Low Energy Electron Spectrometry, Chap. 2, Wiley, New York (1972).

    Google Scholar 

  14. J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).

    Google Scholar 

  15. E. Harting and F. Read, Electron Optics, Elsevier, Amsterdam (1976).

    Google Scholar 

  16. A. Septier, Focussing of Charged Particles, Vols. 1 and 2. Academic Press, New York (1971).

    Google Scholar 

  17. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).

    Article  ADS  Google Scholar 

  18. H. S. W. Massey, E. H. S. Burhop, and H. B. Gilbody, Electronic and Ionic Impact Phenomena, Vol. 1, p. 426, Oxford (1969).

    Google Scholar 

  19. H. A. Bethe, Ann. Phys. Leipzig 5, 325 (1930).

    Article  ADS  MATH  Google Scholar 

  20. R. H. Garstang, J. Chem. Phys. 44, 1308 (1966).

    Article  ADS  Google Scholar 

  21. M. Kraus and Mielczarek, J. Chem. Phys. 51, 5241 (1969).

    Article  ADS  Google Scholar 

  22. I. V. Hertel and K. J. Ross, J. Chem. Phys. 50, 536 (1969).

    Article  ADS  Google Scholar 

  23. M. R. H. Rudge, Proc. Phys. Soc. London 86, 763 (1965).

    Article  ADS  Google Scholar 

  24. V. I. Ockur, Sov. Phys.-JEPT 18, 503 (1964).

    Google Scholar 

  25. E. M. Lassettre, A. Skerbele, and M. A. Dillon, J. Chem. Phys. 50, 1829 (1969).

    Article  ADS  Google Scholar 

  26. A. Skerbele and E. N. Lassettre, J. Chem. Phys. 52, 2708 (1969).

    Article  ADS  Google Scholar 

  27. A. Skerbele and E. N. Lassettre, VII I.C.P.E.A.C., North-Holland, Amsterdam (1971).

    Google Scholar 

  28. J. P. Bromberg, J. Chem. Phys. 51, 4117 (1969).

    Article  ADS  Google Scholar 

  29. I. V. Hertel and K. J. Ross, J. Phys. B 1, 697 (1968).

    Article  ADS  Google Scholar 

  30. T. Shuttleworth, W. R. Newell, and A. C. H. Smith, J. Phys. B 10, 3307 (1977).

    Article  ADS  Google Scholar 

  31. V. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).

    Article  ADS  Google Scholar 

  32. G. V. Marr and D. M. Greek, Proc. R. Soc. London A 304, 245 (1968).

    Article  ADS  Google Scholar 

  33. R. A. Bonham, J. Chem. Phys. 56, 762 (1972).

    Article  ADS  Google Scholar 

  34. E. N. Lassettre, J. Chem. Phys. 43, 4479 (1965).

    Article  ADS  Google Scholar 

  35. A. Lurio, Phys. Rev. 140, A1505 (1965).

    Article  ADS  Google Scholar 

  36. R. H. Garstang, J. Opt. Soc. Am. 52, 845 (1962).

    Article  ADS  Google Scholar 

  37. J. C. Weishert and A. Dalgarno, Chem. Phys. Lett. 9, 517 (1971).

    Article  ADS  Google Scholar 

  38. M. A. Ali, J. Quant. Spectrosc. Radiat. Transfer 11 (1971).

    Google Scholar 

  39. I. V. Hertel and K. J. Ross, J. Phys. B 2, 285 (1969b).

    Article  ADS  Google Scholar 

  40. I. V. Hertel and K. J. Ross, J. Phys. B 2, 484 (1969a).

    Article  ADS  Google Scholar 

  41. W. R. Newell and K. J. Ross, J. Phys. B 5, 701 (1972b).

    Article  ADS  Google Scholar 

  42. W. R. Newell, K. J. Ross, and J. B. P. Wickes, J. Phys. B 4, 684 (1971).

    Article  ADS  Google Scholar 

  43. H. W. Webb and H. A. Messenger, Phys. Rev. 66, 77 (1944).

    Article  ADS  Google Scholar 

  44. D. E. Burgess, M. A. Hender, T. Shuttleworth, and A. C. H. Smith, VIII.C.P.E.A.C. 96 (1971).

    Google Scholar 

  45. L. Vriens, Case Studies in Atomic Collision Physics, Vol. I, Eds. E. W. McDaniel and M. R. C. McDowell, North-Holland, Amsterdam (1969).

    Google Scholar 

  46. H. F. Wellenstein, R. A. Bonham, and R. C. Ulsh, Phys. Rev. A 8, 304 (1973).

    Article  ADS  Google Scholar 

  47. Y. K. Kim, M. Inokuti, G. E. Chamberlain, and S. R. Mielczarek, Phys. Rev. Lett. 21, 1146 (1968).

    Article  ADS  Google Scholar 

  48. M. J. Seaton, Proc. R. Soc. London A208, 418 (1951).

    ADS  Google Scholar 

  49. R. A. Bonham and M. Fink, High Energy Electron Scattering, Van Nostrand Reinhold, New York (1969).

    Google Scholar 

  50. W. R. Newell and K. J. Ross, J. Phys. B 5, 2304 (1972a).

    Article  ADS  Google Scholar 

  51. W. Eitel, F. Hanne, and J. Kessler, VII I.C.P.E.A.C Eds. L. M. Branscombe et al. North-Holland, Amsterdam (1971).

    Google Scholar 

  52. M. Inokuti and R. L. Platzman, IV I.C.P.E.A.C. Science Bookcrafter, New York (1965).

    Google Scholar 

  53. M. J. Van der Wiel and G. Wietes, Physica 53, 225 (1971).

    Article  ADS  Google Scholar 

  54. H. Boersch, J. Geiger, and B. Schröder, VI.C.P.E.A.C, Leningrad, (1967).

    Google Scholar 

  55. C. Backx, R. R. Tol, G. P. Wight, and M. J. Van der Wiel, J. Phys. B 18, 2050 (1975).

    Article  ADS  Google Scholar 

  56. B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).

    Article  ADS  Google Scholar 

  57. J. F. Lowry, D. H. Tomboulian, and D. L. Ederer, Phys. Rev. 1317, A1054 (1965).

    Article  Google Scholar 

  58. J. A. R. Samson, Advances in Atomic and Molecular Physics, Vol. 2, p. 177, Academic Press, New York (1966).

    Google Scholar 

  59. A. Hammett, W. Stoll, G. Branton, C. Brian, and M. J. Van der Wiel, J. Phys. B 9, 945 (1967).

    Article  ADS  Google Scholar 

  60. Y. K. Kim and M. Inokuti, Phys. Rev. 175, 176 (1968).

    Article  ADS  Google Scholar 

  61. K. L. Bell and A. E. Kingston, Proc. Phys. Soc. London 90, 31 (1967).

    Article  ADS  Google Scholar 

  62. C. R. Pekeris, Phys. Rev. 155, 1216 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Lurio and R. Novick, Phys. Rev. 137, A608 (1964).

    Article  Google Scholar 

  64. A. Lurio, R. L. de Zafru, and R. J. Goshen, Phys. Rev. 134, A1198 (1964).

    Article  ADS  Google Scholar 

  65. H. Boersch, J. Geiger, and B. Schröder, Physics of One and Two Electron Atoms, Eds. F. Bopp and H. Kleinpoppen, North-Holland, Amsterdam (1969).

    Google Scholar 

  66. E. N. Lassettre, A. Skerbele, M. A. Dillon, and K. J. Ross, J. Chem. Phys. 48, 5066 (1968).

    Article  ADS  Google Scholar 

  67. P. G. Burke and D. D. McVicar, Proc. Phys. Soc. London, 86, 989 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Newell, W.R. (1979). Optical Oscillator Strengths by Electron Impact Spectroscopy. In: Hanle, W., Kleinpoppen, H. (eds) Progress in Atomic Spectroscopy. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3935-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3935-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3937-3

  • Online ISBN: 978-1-4613-3935-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics