Advertisement

Optical Oscillator Strengths by Electron Impact Spectroscopy

  • W. R. Newell
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

The measurement of an optical oscillator strength (OOS) for an atomic transition has “classically” been done using the standard methods of absorption spectroscopy, (1) i.e., beam attenuation, and of anomalous dispersion and emission techniques. All of these methods involve the production of light sources and/or the detection of emitted photons coupled with the experimental difficulties(2) incurred, especially at shorter wavelengths. Consequently these classical methods have been applied mostly to transitions in the visible region of the spectrum. Recent developments, (3) however, have extended the convenient usable range of such laboratory light sources to less than 600 Å; but for shorter wavelengths the requirement of a synchrotron radiation source becomes necessary, with its attendant cost and size.

Keywords

Oscillator Strength Differential Cross Section Born Approximation Synchrotron Radiation Source Electron Impact Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. G. Mitchell and N. W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge (1934).Google Scholar
  2. 2.
    J. A. R. Samson, Advances in Atomic and Molecular Physics, Vol. 2, p. 177, Academic Press, New York (1966).Google Scholar
  3. 3.
    W. R. S. Garton, J. P. Connerade, M. W. D. Mansfield, and J. E. G. Wheaton, Appl Opt. 8, 919 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    A. Skerbele, M. A. Dillon, and E. N. Lassettre, J. Chem. Phys. 46, 4161 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Haas, Methods Exp. Phys. 4A, 25 (1967).Google Scholar
  6. 6.
    T. Shuttleworth, Thesis, University College London (1977); T. Shuttleworth, W. R. Newell, and A. C. H. Smith, J. Phys. B, 10, 1641 (1977).Google Scholar
  7. 7.
    P. Marmet and L. Kerwin, Can. J. Phys. 38, 787 (1960).ADSCrossRefGoogle Scholar
  8. 8.
    C. E. Kuyatt and J. A. Simpson, Rev. Sci. Instrum. 38, 193 (1966).Google Scholar
  9. 9.
    J. A. Simpson, Rev. Sci. Instrum. 35, 1698 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    J. E. Lano and W. Raith, Phys. Rev. Lett. 30, 193 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    D. G. Wilden, P. J. Hicks, and J. Cromer, J. Phys. B 9, 1959 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    R. E. Fox, W. M. Hickam, D. J. Grove, and A. S. Kjelda, Rev. Sci. Instrum. 26, 1101 (1951).ADSCrossRefGoogle Scholar
  13. 13.
    M. F. Rudd, Low Energy Electron Spectrometry, Chap. 2, Wiley, New York (1972).Google Scholar
  14. 14.
    J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).Google Scholar
  15. 15.
    E. Harting and F. Read, Electron Optics, Elsevier, Amsterdam (1976).Google Scholar
  16. 16.
    A. Septier, Focussing of Charged Particles, Vols. 1 and 2. Academic Press, New York (1971).Google Scholar
  17. 17.
    M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    H. S. W. Massey, E. H. S. Burhop, and H. B. Gilbody, Electronic and Ionic Impact Phenomena, Vol. 1, p. 426, Oxford (1969).Google Scholar
  19. 19.
    H. A. Bethe, Ann. Phys. Leipzig 5, 325 (1930).ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    R. H. Garstang, J. Chem. Phys. 44, 1308 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    M. Kraus and Mielczarek, J. Chem. Phys. 51, 5241 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    I. V. Hertel and K. J. Ross, J. Chem. Phys. 50, 536 (1969).ADSCrossRefGoogle Scholar
  23. 23.
    M. R. H. Rudge, Proc. Phys. Soc. London 86, 763 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    V. I. Ockur, Sov. Phys.-JEPT 18, 503 (1964).Google Scholar
  25. 25.
    E. M. Lassettre, A. Skerbele, and M. A. Dillon, J. Chem. Phys. 50, 1829 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    A. Skerbele and E. N. Lassettre, J. Chem. Phys. 52, 2708 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    A. Skerbele and E. N. Lassettre, VII I.C.P.E.A.C., North-Holland, Amsterdam (1971).Google Scholar
  28. 28.
    J. P. Bromberg, J. Chem. Phys. 51, 4117 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    I. V. Hertel and K. J. Ross, J. Phys. B 1, 697 (1968).ADSCrossRefGoogle Scholar
  30. 30.
    T. Shuttleworth, W. R. Newell, and A. C. H. Smith, J. Phys. B 10, 3307 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    V. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    G. V. Marr and D. M. Greek, Proc. R. Soc. London A 304, 245 (1968).ADSCrossRefGoogle Scholar
  33. 33.
    R. A. Bonham, J. Chem. Phys. 56, 762 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    E. N. Lassettre, J. Chem. Phys. 43, 4479 (1965).ADSCrossRefGoogle Scholar
  35. 35.
    A. Lurio, Phys. Rev. 140, A1505 (1965).ADSCrossRefGoogle Scholar
  36. 36.
    R. H. Garstang, J. Opt. Soc. Am. 52, 845 (1962).ADSCrossRefGoogle Scholar
  37. 37.
    J. C. Weishert and A. Dalgarno, Chem. Phys. Lett. 9, 517 (1971).ADSCrossRefGoogle Scholar
  38. 38.
    M. A. Ali, J. Quant. Spectrosc. Radiat. Transfer 11 (1971).Google Scholar
  39. 39.
    I. V. Hertel and K. J. Ross, J. Phys. B 2, 285 (1969b).ADSCrossRefGoogle Scholar
  40. 40.
    I. V. Hertel and K. J. Ross, J. Phys. B 2, 484 (1969a).ADSCrossRefGoogle Scholar
  41. 41.
    W. R. Newell and K. J. Ross, J. Phys. B 5, 701 (1972b).ADSCrossRefGoogle Scholar
  42. 42.
    W. R. Newell, K. J. Ross, and J. B. P. Wickes, J. Phys. B 4, 684 (1971).ADSCrossRefGoogle Scholar
  43. 43.
    H. W. Webb and H. A. Messenger, Phys. Rev. 66, 77 (1944).ADSCrossRefGoogle Scholar
  44. 44.
    D. E. Burgess, M. A. Hender, T. Shuttleworth, and A. C. H. Smith, VIII.C.P.E.A.C. 96 (1971).Google Scholar
  45. 45.
    L. Vriens, Case Studies in Atomic Collision Physics, Vol. I, Eds. E. W. McDaniel and M. R. C. McDowell, North-Holland, Amsterdam (1969).Google Scholar
  46. 46.
    H. F. Wellenstein, R. A. Bonham, and R. C. Ulsh, Phys. Rev. A 8, 304 (1973).ADSCrossRefGoogle Scholar
  47. 47.
    Y. K. Kim, M. Inokuti, G. E. Chamberlain, and S. R. Mielczarek, Phys. Rev. Lett. 21, 1146 (1968).ADSCrossRefGoogle Scholar
  48. 48.
    M. J. Seaton, Proc. R. Soc. London A208, 418 (1951).ADSGoogle Scholar
  49. 49.
    R. A. Bonham and M. Fink, High Energy Electron Scattering, Van Nostrand Reinhold, New York (1969).Google Scholar
  50. 50.
    W. R. Newell and K. J. Ross, J. Phys. B 5, 2304 (1972a).ADSCrossRefGoogle Scholar
  51. 51.
    W. Eitel, F. Hanne, and J. Kessler, VII I.C.P.E.A.C Eds. L. M. Branscombe et al. North-Holland, Amsterdam (1971).Google Scholar
  52. 52.
    M. Inokuti and R. L. Platzman, IV I.C.P.E.A.C. Science Bookcrafter, New York (1965).Google Scholar
  53. 53.
    M. J. Van der Wiel and G. Wietes, Physica 53, 225 (1971).ADSCrossRefGoogle Scholar
  54. 54.
    H. Boersch, J. Geiger, and B. Schröder, VI.C.P.E.A.C, Leningrad, (1967).Google Scholar
  55. 55.
    C. Backx, R. R. Tol, G. P. Wight, and M. J. Van der Wiel, J. Phys. B 18, 2050 (1975).ADSCrossRefGoogle Scholar
  56. 56.
    B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).ADSCrossRefGoogle Scholar
  57. 57.
    J. F. Lowry, D. H. Tomboulian, and D. L. Ederer, Phys. Rev. 1317, A1054 (1965).CrossRefGoogle Scholar
  58. 58.
    J. A. R. Samson, Advances in Atomic and Molecular Physics, Vol. 2, p. 177, Academic Press, New York (1966).Google Scholar
  59. 59.
    A. Hammett, W. Stoll, G. Branton, C. Brian, and M. J. Van der Wiel, J. Phys. B 9, 945 (1967).ADSCrossRefGoogle Scholar
  60. 60.
    Y. K. Kim and M. Inokuti, Phys. Rev. 175, 176 (1968).ADSCrossRefGoogle Scholar
  61. 61.
    K. L. Bell and A. E. Kingston, Proc. Phys. Soc. London 90, 31 (1967).ADSCrossRefGoogle Scholar
  62. 62.
    C. R. Pekeris, Phys. Rev. 155, 1216 (1959).MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    A. Lurio and R. Novick, Phys. Rev. 137, A608 (1964).CrossRefGoogle Scholar
  64. 64.
    A. Lurio, R. L. de Zafru, and R. J. Goshen, Phys. Rev. 134, A1198 (1964).ADSCrossRefGoogle Scholar
  65. 65.
    H. Boersch, J. Geiger, and B. Schröder, Physics of One and Two Electron Atoms, Eds. F. Bopp and H. Kleinpoppen, North-Holland, Amsterdam (1969).Google Scholar
  66. 66.
    E. N. Lassettre, A. Skerbele, M. A. Dillon, and K. J. Ross, J. Chem. Phys. 48, 5066 (1968).ADSCrossRefGoogle Scholar
  67. 67.
    P. G. Burke and D. D. McVicar, Proc. Phys. Soc. London, 86, 989 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • W. R. Newell
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations