Stored Ion Spectroscopy

  • Hans A. Schuessler
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Since the development of the three-dimensional quadrupole trap(1.2) and its introduction into atomic physics in the late 1950s, most applications have relied on the charge-to-mass selective storage feature of this device. It is therefore being used as a mass spectrometer(3) but, in spectroscopy, also as an ideal tool to suspend charged particles, such as ions, ion molecules, and electrons, in ultrahigh vacuum for long periods of time. This last feature is the subject matter of this chapter. The long storage time, combined with the almost complete isolation from environmental perturbations, leads to the high intrinsic accuracy and precision inherent in the spectroscopy of stored ions. The state of the art of three-dimensional quadrupole ion traps and of their application to high-resolution spectroscopy will be described. This field was pioneered by H. G. Dehmelt, who also reviewed(4) the subject in 1967 and 1969. Several new developments have evolved since then and will be discussed here.

Keywords

Microwave Mercury Helium Radium Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Paul, O. Osberghaus, and E. Fischer, Forschungsber. Wirtsch. Verkehrsminist. Nordrhein-Westfalen No. 415 (1958).Google Scholar
  2. 2.
    E. Fischer, Z. Phys. 156, 1 (1959).ADSCrossRefGoogle Scholar
  3. 3.
    W. Paul, H. P. Reinhardt, and U. von Zahn, Z. Phys. 152, 143 (1958).ADSCrossRefGoogle Scholar
  4. 4.
    H. G. Dehmelt, Advan. At. Mol. Phys. 3, 53 (1967); 4, 109 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    C. B. Richardson, K. B. Jefferts, and H. G. Dehmelt, Phys. Rev. 165, 80 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    M. N. Benilan and C. Audoin, Int. J. Mass Spectrom. Ion Phys. 11, 421 (1973).CrossRefGoogle Scholar
  7. 7.
    R. Ifflaender and G. Werth, Metrologia 13, 167 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    R. F. Wuerker, H. Shelton, and R. V. Langmuir, J. Appl. Phys. 30, 342 (1959).ADSCrossRefGoogle Scholar
  9. 9.
    P. L. Kapitsa, Zh. Eksperim. i Teor. Fiz. 21, 588 (1951).Google Scholar
  10. 10.
    P. H. Dawson and N. R. Whetten, J. Vac. Sci. Technol. 5, 1 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    P. H. Dawson and N. R. Whetten, Int. J. Mass Spectrom. Ion Phys. 2, 45 (1969).CrossRefGoogle Scholar
  12. 12.
    M. Baril and A. Septier, Rev. Phys. Appl 9, 525 (1974).CrossRefGoogle Scholar
  13. 13.
    P. H. Dawson and C. Lambert, Int. J. Mass Spectrom. Ion Phys. 16, 269 (1975).CrossRefGoogle Scholar
  14. 14.
    H. A. Schuessler, E. N. Fortson, and H. G. Dehmelt, Phys. Rev. 187, 5 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    H. G. Dehmelt and F. L. Walls, Phys. Rev. Lett. 21, 127 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    K. B. Jefferts, Phys. Rev. Lett. 20, 39 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    H. A. Schuessler, Bull. Am. Phys. Soc. 13, 1674 (1968).Google Scholar
  18. 18.
    F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    H. A. Schuessler, Metrologia 13, 109 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    M. H. Prior and E. C. Wang, Phys. Rev. Lett. 35, 29 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    K. H. Kingdon, Phys. Rev. 121, 408 (1923).ADSCrossRefGoogle Scholar
  22. 22.
    F. G. Major and G. Werth, Phys. Rev. Lett. 30, 1155 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    M. D. McGuire, R. Petsch, and G. Werth, in Abstracts of the Fifth International Conference on Atomic Physics, p. 407 (1977).Google Scholar
  24. 24.
    J. L. Duchene, C. Audoin, and J. P. Schermann, C.R. Acad. Sci. 24 Mai (1976).Google Scholar
  25. 25.
    H. G. Dehmelt and K. B. Jefferts, Phys. Rev. 125, 1318 (1962).ADSCrossRefGoogle Scholar
  26. 26.
    K. B. Jefferts, Phys. Rev. Lett. 23, 1476 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    R. S. Mulliken, J. Chem. Phys. 7, 20 (1939).ADSCrossRefGoogle Scholar
  28. 28.
    S. C. Menasian, Thesis, University of Washington (1973).Google Scholar
  29. 29.
    D. Church and H. G. Dehmelt, J. Appl. Phys. 40, 3421 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    J. André and J. P. Schermann, Phys. Lett. 45A, 139 (1973).ADSGoogle Scholar
  31. 31.
    J. André, J. Phys. (Paris) 37, 719 (1976).CrossRefGoogle Scholar
  32. 32.
    H. Dehmelt, Nature (London) 262, 777 (1976).ADSCrossRefGoogle Scholar
  33. 33.
    M. Arditi and R. R. Carver, Phys. Rev. 112, 449 (1958).ADSCrossRefGoogle Scholar
  34. 34.
    J. P. Barrat and C. Cohen-Tannoudji, J. Phys. Radium 22, 329, 443 (1961).MATHCrossRefGoogle Scholar
  35. 35.
    B. S. Mathur, H. Tang, and W. Happer, Phys. Rev. 171, 11 (1968).ADSCrossRefGoogle Scholar
  36. 36.
    S. Yeh and P. Stehle, Phys. Rev. A 15, 213 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    C. Schwartz, Ann. Phys. (N. Y.) 2, 156 (1959).ADSCrossRefGoogle Scholar
  38. 38.
    H. A. Schuessler, Phys. Lett. 30A, 350 (1969).ADSGoogle Scholar
  39. 39.
    H. A. Schuessler, Appl. Phys. Lett. 18, 117 (1971).ADSCrossRefGoogle Scholar
  40. 40.
    F. G. Major and J. L. Duchene, J. Phys. (Paris) 36, 953 (1975).CrossRefGoogle Scholar
  41. 41.
    H. A. Schuessler, Bull. Am. Phys. Soc. 16, 532 (1971).Google Scholar
  42. 42.
    H. A. Bethe and E. E. Salpeter, in Quantum Mechanics of One and Two-Electron Atoms, p. 110, Springer-Verlag, Berlin (1957).MATHGoogle Scholar
  43. 43.
    D. Greenberg and H. M. Foley, Phys. Rev. 120, 1684 (1960).ADSCrossRefGoogle Scholar
  44. 44.
    D. E. Zwanziger, Phys. Rev. 121, 1128 (1961).ADSCrossRefGoogle Scholar
  45. 45.
    M. M. Sternheim, Phys. Rev. 130, 211 (1963).ADSCrossRefGoogle Scholar
  46. 46.
    P. T. Olson and E. R. Williams, Proceedings of the Fifth Conference on Precision Electromagnetic Measurements, Paris (1975).Google Scholar
  47. 47.
    T. W. Haensch, Phys. Rev. Lett. 32, 1336 (1974).ADSCrossRefGoogle Scholar
  48. 48.
    W. L. Williams and V. W. Hughes, Phys. Rev. 185, 1251 (1969).ADSCrossRefGoogle Scholar
  49. 49.
    A. H. Wapstra and N. B. Gove, Nucl. Data Tables 9, 267 (1971).CrossRefGoogle Scholar
  50. 50.
    D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. R. Soc. (London) 246, 215 (1953).MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    D. M. Bishop, Mol. Phys. 28, 1397 (1974).ADSCrossRefGoogle Scholar
  52. 52.
    W. B. Somerville, Mon. Not. R. Astron. Soc. 139, 163 (1968).ADSGoogle Scholar
  53. 53.
    S. K. Luke, Astrophys. J. 156, 761 (1969).ADSCrossRefGoogle Scholar
  54. 54.
    H. G. Dehmelt, Bull. Am. Phys. Soc. 18, 1521 (1973).Google Scholar
  55. 55.
    D. J. Wineland, R. E. Drullinger, and F. C. Walls, Phys. Rev. Lett. 40, 1639 (1978).ADSCrossRefGoogle Scholar
  56. 56.
    H. G. Dehmelt and P. Toschek, Bull. Am. Phys. Soc. 20, 61 (1975).Google Scholar
  57. 57.
    P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, and J. B. West, Bull. Am. Phys. Soc. 21, 599 (1976).Google Scholar
  58. 58.
    H. A. Schuessler, Metrologia, 7, 103 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Hans A. Schuessler
    • 1
  1. 1.Department of PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations