Advertisement

The Spectroscopy of Highly Excited Atoms

  • Daniel Kleppner
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Rydberg atoms—atoms in highly excited states—have become the focus of attention of a number of research groups, though approaches to the field have been along a variety of routes. Some studies, for example the precision measurements of fine structure in helium described by Wing and MacActam elsewhere in this volume, grew naturally out of systematic studies of low-lying states. Much of the work, however, approaches highly excited atoms as a more-or-less separate species with its own characteristic phenomena. Ionization by a static electric field, for instance, plays little if any role in conventional spectroscopy but can be of central importance to the study of highly excited atoms. Because field ionization encompasses both discrete state and continuum behavior, photoabsorption in a strong field can simultaneously display characteristics of bound-state resonant absorption, photoionization, and photoabsorption. As another example, the phenomenology of thermal collisions between molecules and Rydberg atoms can be dominated by inelastic processes between quasidegenerate levels, or by electron attachment, processes which are entirely absent in ground-state collisions.

Keywords

Ionization Rate Rydberg State Rydberg Atom Field Ionization Quantum Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Wing and K. B. MacActam, Chapter 11 of this volume.Google Scholar
  2. 2.
    W. A. Chupka, private communication.Google Scholar
  3. 3.
    S. Svanberg, P. Tsekeris, and W. Happer, Phys. Rev. Lett. 30, 817 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    S. Haroche, M. Gross, and M. P. Silverman, Phys. Rev. Lett. 33, 1063 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    G. Fabre, M. Gross, and S. Haroche, Opt. Commun. 13, 393 (1975); K. Fredrickson and S. Svanberg, J. Phys. B 9, 1237 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    K. C. Harvey and B. P. Stoicheff, Phys. Rev. Lett. 38, 537 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    C. D. Harper and M. D. Levenson, Phys. Lett. 56A, 361 (1976).ADSGoogle Scholar
  8. 8.
    T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. A 11, 1504 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    H. Landberg and S. Svanberg, Phys. Lett. 56A, 31 (1976).ADSGoogle Scholar
  10. 10.
    F. Gounand, D. F. Fournier, J. Cuvellier, and J. Berlande, Phys. Lett. 59A, 23 (1976).ADSGoogle Scholar
  11. 11.
    T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 14, 744 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    R. R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    T. W. Ducas and M. L. Zimmerman, Phys. Rev. A 15, 1523 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    T. W. Ducas, M. G. Littman, R. R. Freeman, and D. Kleppner, Phys. Rev. Lett. 35, 366 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    R. F. Stebbings, C. J. Latimer, W. P. West, F. B. Dunning, and T. B. Cook, Phys. Rev. A 12, 1453 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    A. F. J. van Raan, G. Braum, and W. Raith, J. Phys. B 9, L173 (1976).CrossRefGoogle Scholar
  17. 17.
    D. Herrick, J. Chem. Phys. 65, 3529 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    T. F. Gallagher, L. M. Humphrey, R. M. Hill, and S. A. Edelstein, Phys. Rev. Lett. 37, 1465 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    D. S. Bailey, J. R. Hiskes, and A. C. Riviere, Nucl. Fusion 5, 41 (1965).CrossRefGoogle Scholar
  20. 20.
    M. G. Littman, M. L. Zimmerman, T. W. Ducas, R. R. Freeman, and D. Kleppner, Phys. Rev. Lett. 36, 788 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    M. G. Littman, M. L. Zimmerman, and D. Kleppner, Phys. Rev. Lett. 37, 486 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    T. A. Miller and R. S. Freund, in Advances in Magnetic Resonance, Vol. 9, Ed. J. S. Waugh, Academic Press, New York (1977), p. 49.Google Scholar
  23. 23.
    D. Esherick, J. A. Armstrong, R. W. Dreyfus, and J. J. Wynne, Phys. Rev. Lett. 36, 1296 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    J. A. Armstrong, D. Esherick, and J. J. Wynne, Phys. Rev. A 15, 180 (1977).ADSCrossRefGoogle Scholar
  25. 25.
    M. J. Seaton, Comments At. Mol. Phys. D2, 37 (1970).ADSGoogle Scholar
  26. 26.
    U. Fano, J. Opt. Soc. Am. 65, 979 (1975); K. T. Lu and U. Fano, Phys. Rev. A 2, 81 (1970).ADSCrossRefGoogle Scholar
  27. 27.
    P. Esherick, Phys. Rev. A 15, 1920 (1977).ADSCrossRefGoogle Scholar
  28. 28.
    P. Esherick, J. J. Wynne, and J. A. Armstrong (to be published).Google Scholar
  29. 29.
    R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., Phys. Rev. A 14, 1129 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    J. R. Rubbmark, S. A. Borgström, and K. Bockasten, J. Phys. B 10, 421 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Daniel Kleppner
    • 1
  1. 1.Research Laboratory of Electronics and Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations