Advertisement

Sodium and Water Excretion in Patients with Congestive Heart Failure and Cirrhosis

  • Daniel Bichet
  • R. W. Schrier
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 35)

Abstract

Possible pathophysiologic mechanisms producing sodium and water excretion in patients with congestive heart failure and cirrhosis are reviewed. Sodium retention in cirrhosis seems to be mediated by a decreased central blood volume (afferent mechanism) and increased sympathetic activity, as well as stimulation of the renin aldosterone system (efferent mechanism). An increase in renal sympathetic activity appears to 1) diminish renal hemodynamics, 2) decrease distal fluid delivery, and 3) impair “escape” from aldosterone. Sodium retention in cardiac failure appears to be due to similar multifactorial mechanisms. Impairment in water excretion in association with congestive heart failure and cirrhosis seems to be mediated by a persistent non-osmotic release of AVP. In addition, the diminished fluid delivery to the distal diluting segment can contribute to the abnormal water excretion in cirrhosis and cardiac failure.

Keywords

Sodium Retention Water Excretion Urinary Sodium Excretion Central Blood Volume Ascites Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welt LG: The influence of disease on the renal excretion of water. Yale J Biol Med (29):299–315, 1956.PubMedGoogle Scholar
  2. 2.
    Epstein FH: Renal excretion of water and the concept of a volume receptor. Yale J Biol Med (29)2 282–297, 1956.PubMedGoogle Scholar
  3. 3.
    Papper S: The role of the kidney in Laennec’s cirrhosis of the liver. Medicine (37):299–316, 1958.PubMedCrossRefGoogle Scholar
  4. 4.
    Skorecki KL, Brenner BM: Body fluid hemostasis in congestive heart failure and cirrhosis with ascites. Am J Med (72):323–338, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Berns AS, Schrier RW: The kidney in heart failure. In: Suki WN, Eknoyan G (eds), The kidney in systemic disease (2nd ed). John Wiley & Sons, New York, 1981.Google Scholar
  6. 6.
    Levy M: Pathophysiology of ascites formation. In: Epstein M (ed), The kidney in liver disease ( 2nd ed ). Elsevier Science Publishing Co, New York, 1983, pp 245–280.Google Scholar
  7. 7.
    Paller MS, Schrier RW: Pathogenesis of sodium and water retention in edematous disorders. Am J Kidney Dis (2):241–254, 1982.PubMedGoogle Scholar
  8. 8.
    Schrier RW, Humphreys MH: Factors involved in the antinatriuretic effects of acute constriction of the thoracic and abdominal inferior vena cava. Circ Res (29):479, 1971.PubMedGoogle Scholar
  9. 9.
    Schrier RW, Humphreys MH, Ufferman RC: Role of cardiac output and autonomic nervous system in the antinatriuretic response to acute constriction of the superior vena cava. Circ Res (29):490–498, 1971.PubMedGoogle Scholar
  10. 10.
    Lifschitz MD, Schrier RW: Alterations in cardiac output with chronic constriction of thoracic inferior vena cava. Am J Physiol (225):1364–1370, 1973.PubMedGoogle Scholar
  11. 11.
    Hope J: A Treatise on the Diseases of the Heart and Blood Vessels. London, William Kidd, 1832.Google Scholar
  12. 12.
    Starling EH: Physiological factors involved in the causation of dropsy. Lancet (2):1405, 1896.Google Scholar
  13. 13.
    Wanen JV, Stead EA: Fluid dynamics in chronic congestive heart failure: an interpretation of the mechanisms producing edema, increased plasma volume and elevated venous pressure in certain patients with prolonged congestive heart failure. Arch Intern Med (73):138, 1944.Google Scholar
  14. 14.
    Fowler NO: High cardiac output states. In: Hurst JW (ed), The Heart. McGraw Hill, New York, 1974, p 1508.Google Scholar
  15. 15.
    Epstein FH, Post RS, McDowell M: The effects of an arteriovenous fistula on renal hemodynamics and electrolyte excretion. J Clin Invest (32):233–241, 1953.Google Scholar
  16. 16.
    Epstein FH, Skadle OW, Ferguson TB, McDowell ME: Cardiac output and intracardiac pressure in patients with arteriovenous fistulas. J Clin Invest (32):543–547, 1953.Google Scholar
  17. 17.
    Henry JP, Gauer OH, Reeves JL: Evidence of the atrial location of receptors influencing urine flow. Circ Res (4):85–90, 1956.Google Scholar
  18. 18.
    Paintal AS: Vagal sensory receptors and their reflux effects. Physiol Rev (53):159–227, 1973.Google Scholar
  19. 19.
    Gauer OH, Henry JP, Sicker HO, Wendt WB: The effect of negative pressure breathing on urine flow. J Clin Invest (33):287, 1954.Google Scholar
  20. 20.
    Epstein M, Duncan DC, Fishman LM: Characterization of the natriuresis caused in normal man by immersion in water. Clin Sci (43):275–287, 1972.Google Scholar
  21. 21.
    Hulet WH, Smith HH: Postural natriuresis and urine osmotic concentration in hydropenic subjects. Am J Med (30):8–25, 1961.Google Scholar
  22. 22.
    Murdaugh HV Jr, Sieker HO, Manfredl F: Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest (38):384–442, 1959.Google Scholar
  23. 23.
    Epstein FH, Goodyer AVN, Lawrason FD, Relman AS: Studies of the antidiuresis of quiet standing: the importance of changes in plasma volume and glomerular filtration rate. J Clin Invest (30):63–72, 1951.Google Scholar
  24. 24.
    Hollander W, Judson WE: The relationship of cardiovascular and renal hemodynamic function to sodium excretion in patients with severe heart disease but without edema. J Clin Invest (35):970–979, 1956.Google Scholar
  25. 25.
    Gillespie DJ, Sandberg RL, Koike TI: Dual effect of left atrial receptors on excretion of sodium and water in the dog. Am J Physiol (225):706–710, 1973.RGoogle Scholar
  26. 26.
    einhardt HW, Kaczmarczyk G, Eisele R, Arnold B, Eigenheer F, Kuhl U: Left atrial pressure and sodium balance in conscious dogs on a low sodium intake. Pflugers Arch (370):59–66, 1977.Google Scholar
  27. 27.
    Chidsey CA, Braunwald E, Morrow AG: Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med (39):442–451, 1965.Google Scholar
  28. 28.
    Thomas JA, Marks BH: Plasma norepinephrine in congestive heart failure. Am J Cardiol (41):233–243, 1978.Google Scholar
  29. 29.
    Cody RJ, Franklin KW, Kluger J, Laragh JH: Sympathetic responsiveness and plasma norepinephrine during therapy of congestive heart failure with captopril. Am J Med (72):791–797, 1981.Google Scholar
  30. 30.
    Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN: Activity of the sympathetic nervous system and reninangiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol (49):1659–1666, 1982.Google Scholar
  31. 31.
    Watkins L, Burton JA, Haber E, Cant JR, Smith FW, Barger AC: The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. J Clin Invest (57):1606–1617, 1976.Google Scholar
  32. 32.
    Dzau VJ, Colucci WS, Hollenberg NK, Williams GH: Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation (63):645–651, 1981.Google Scholar
  33. 33.
    Bell NH, Schedl HP, Bartter FC: An explanation for abnormal water retention, and hypoosmolality in congestive heart failure. Am J Med (36):351–360, 1964.Google Scholar
  34. 34.
    Dzau VJ, Colucci WS, Williams GH, Curfman G, Meggs L, Hollenberg NK: Sustained effectiveness of converting enzyme inhibition in patients with severe congestive heart failure. N Engl J Med (302):1373–1379, 1980Google Scholar
  35. 35.
    Szatalowicz VL, Arnold PE, Chaimovitz C, Bichet D, Berl T, Schrier RW: Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med (305):263–266, 1981.Google Scholar
  36. 36.
    Riegger GAJf Liebau G, Kochsick K: Antidiuretic hormone in congestive heart failure. Am J Med (72):49–52, 1982.Google Scholar
  37. 37.
    Anderson RJ, Cadnapaphornchai P, Harbottle JA, McDonald KM, Schrier RW: Mechanism of effect of thoracic inferior vena cava constriction on renal water excretion. J Clin Invest (54):1473–1479, 1974.Google Scholar
  38. 38.
    de Torrente A, Robertson GL, McDonald KM, Schrier RW: Mechanism of diuretic response to increased left atrial pressure in the anesthetized dog. Kidney Int (8):355–361, 1975.Google Scholar
  39. 39.
    Handelman W, Lum G, Schrier RW: Impaired water excretion in high output cardiac failure in the rat (abstract). Clin Res (27):173A, 1979.Google Scholar
  40. 40.
    Rondeau E, de Lima J, Caillens H, Ardaillou R, Vahanian A, Acar J: High plasma antidiuretic hormone in patients with cardiac failure: influence of age. Mineral and Electrolyte Metabolism (8):267, 1982.Google Scholar
  41. 41.
    Schrier RW, Berl T, Anderson RJ: Osmotic and nonosmotic control of vasopressin release. Am J Physiol (236):F321, 1979.Google Scholar
  42. 42.
    Witte MH, Witte CL, Dumont AE: Physiological factors involved in the causation of cirrhotic ascites. Gastroenterology (61):742–750, 1971.Google Scholar
  43. 43.
    Lieberman FL, Ito S, Reynolds TB: Effective plasma volume in cirrhosis with ascites. J Clin Invest (48):975–981, 1969.Google Scholar
  44. 44.
    Epstein M, Pins DS, Schneider N, et al: Determinants of deranged sodium and water homeostasis in decompensated cirrhosis. J Lab Clin Med (87):822–839, 1976.PubMedGoogle Scholar
  45. 45.
    Greig PD, Blendis LM, Langer B, Ruse J, Taylor BR: The acute effects of sustained volume expansion on the reninaldosterone system and renal function in human hepatic ascites. J Lab Clin Med (98):127–134, 1981.Google Scholar
  46. 46.
    Bichet D, Szatalowicz VL, Chaimovitz C, Schrier RW: Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med (96):413–417, 1982.Google Scholar
  47. 47.
    Bichet D, Van Putten VJ, Schrier RW: Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. New Engl J Med (307):1552–1557, 1982.Google Scholar
  48. 48.
    Bichet D, Groves RM, Schrier RW: Mechanisms of improvement of water and sodium excretion by enhancement of central hemodynamics in decompensated cirrhotic patients. Clin Res (31):75A, 1983.Google Scholar
  49. 49.
    Lieberman FL, Denison EK, Reynolds TB: The relationship of plasma volume, portal hypertension, ascites and renal retention in cirrhosis: the overflow theory of ascites formation. Ann NY Acad Sci (170):202, 1970.Google Scholar
  50. 50.
    Epstein FH: Underfilling vs overflow in hepatic ascites. N Engl J Med (307):1577–1578, 1982.Google Scholar
  51. 51.
    Levy Ms Sodium retention and ascites formation in dogs with experimental portal cirrhosis. Am J Physiol (233):F575–F585, 1977.Google Scholar
  52. 52.
    Levy M, Wexler MJ: Renal sodium retention and ascites formation in dogs with experimental cirrhosis but without portal hypertension or with increased splanchnic vascular capacity. J Lab Clin Med (91):520–536, 1978.Google Scholar
  53. 53.
    Levy M, Allotey JBK: Temporal relationship between urinary salt retention and altered systemic hemodynamics in dogs with experimental cirrhosis. J Lab Clin Med (92):560–569, 1978.Google Scholar
  54. 54.
    Lopez-Novoa JM, Rengel MA, Rodicio JL, Hernando L: A micropuncture study of salt and water retention in chronic experimental cirrhosis. Am J Physiol (232):F315–F318, 1977.Google Scholar
  55. 55.
    Lopez-Novoa JM, Rengel MA, Hernando L: Dynamics of ascites formation in rats with experimental cirrhosis. Am J Physiol (238):F353–F357, 1980.Google Scholar
  56. 56.
    Levy M, Seely JF: Pathophysiology of edema formation. In: Brenner BM, Rector FC Jr (eds), The Kidney. WB Saunders, Philadelphia, 1981, p 723.Google Scholar
  57. 57.
    Schedl HP, Bartter FC: An explanation for an experimental correction of the abnormal water diuresis in cirrhosis. J Clin Invest (39):248–260, 1960.Google Scholar
  58. 58.
    Kramer HJ: Natriuretic hormone; its possible role in fluid and electrolyte disturbances in chronic liver disease. Postgrad Med J (51):532–535, 1975.Google Scholar
  59. 59.
    Wong P: Kallikrein-kinin and renin angiotensin systems in functional renal failure of cirrhosis of the liver. Gastroenterology (73):1114–1117, 1977.PubMedGoogle Scholar
  60. 60.
    Epstein M: Characterization of renal prostaglandin E responsiveness in decompensated cirrhosis: implications for renal sodium handling. Clin Sci (63):555–559, 1982.PubMedGoogle Scholar
  61. 61.
    Eisenmenger WJ, Blondheim SH, Bongiovanni AM, Kunkel HG: Electrolyte studies on patients with cirrhosis of the liver. J Clin Invest (292):1491–1499, 1950.CrossRefGoogle Scholar
  62. 62.
    Anderson RJ, Cronin RE, MacDonald KM, Schrier RW: Mechanism of portal hypertension induces alterations in renal hemodynamics, renal water excretion and renin secretion. J Clin Invest (58):964–970, 1976.PubMedCrossRefGoogle Scholar
  63. 63.
    Better OS, Aisenbrey GA, Anderson RJ, et al: Role of antidiuretic hormone in impaired urinary dilution associated with chronic bile duct ligation. Clin Sci (58):493–500, 1980.PubMedGoogle Scholar
  64. 64.
    Linas SL, Anderson RJ, Guggenheim SJ, Robertson GL, Berl T: The role of vasopressin in the impaired water excretion in the conscious rat with experimental cirrhosis. Kidney Int (29):173–180, 1981.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Daniel Bichet
  • R. W. Schrier

There are no affiliations available

Personalised recommendations